Luminescent properties of single-phase Ba2P2O7:Tb3+, R (R = Eu2+, Ce3+) phosphors for white LED

  • Shumian Xu
  • Sha-sha Liu
  • Cong Zhao
  • Tao Han
  • Dachuan ZhuEmail author


The Ba2P2O7:Tb3+, R (R = Eu2+, Ce3+) phosphors were synthesized by use of a co-precipitation method. Crystal phase, excitation and emission spectra of sample phosphors are analyzed by means of XRD and FL, respectively. The emission spectra of Ba2P2O7:Ce3+, Tb3+ phosphors exhibit four linear peaks attributed to the 5D4 → 7FJ (J = 6–3) transition of Tb3+ while four broad emission bands are observed in the emission spectra of Ba2P2O7:Eu2+, Tb3+ phosphors. The effects of Eu2+ concentration on the luminescent properties of Ba2P2O7:Tb3+, R (R = Eu2+, Ce3+) are studied. Ce3+ affects the luminescent properties of Ba2P2O7:Ce3+, Tb3+ phosphors just as the sensitizer. However, Eu2+ is considered both as the sensitizer and the activator in Ba2P2O7:Eu2+, Tb3+ phosphors. The chromaticity coordinates of Eu2+ and Tb3+ co-doped phosphors gather around the white light field with the CCT approximate to 5000 K, indicating that the luminescent property of Ba2P2O7:Eu2+, Tb3+ phosphors may approach to a desired level needed for white LED application.


Luminescent Property Luminous Efficiency Broad Emission Band Correlate Colour Temperature Terminal Oxygen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Open Project Foundation of Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology (Grant No. KFJJ1302).


  1. 1.
    M. Tong, Y. Liang, P. Yan, Q. Wang, G. Li, OPT Laser Technol. 75, 221 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R 71, 1 (2010)CrossRefGoogle Scholar
  3. 3.
    C. Zhao, D.-c.. Zhu, W. Gao, M.-j.. Tu, L.-l.. Luo, T. Han, X.-l.. Jing, Chem. Eng. J. 254, 486 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Dwivedi, P. Kumar, A. Kumar, Sudama, V.N. Singh, B.P. Singh, S.K. Dhawan, V. Shanker, B.K. Gupta, RSC Adv. 4, 54936 (2014)Google Scholar
  5. 5.
    X.Q. Piao, T. Horikawa, H. Hanzawa, K. Machida, Appl. Phys. Lett. 88, 161908 (2006)CrossRefGoogle Scholar
  6. 6.
    X. Chen, P.P. Dai, X.T. Zhang, C. Li, S. Lu, X.L. Wang, Y. Jia, Y.C. Liu, lnorg. Chem. 53, 3441 (2014)CrossRefGoogle Scholar
  7. 7.
    M.M. Shang, C.X. Li, J. Lin, Chem. Soc. Rev. 43, 1372 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Zhang, Y. Liang, M. Tong, Q. Wang, D. Yu, J. Zhao, J. Wu, Ceram. Int. 40, 10407 (2014)CrossRefGoogle Scholar
  9. 9.
    L.E. Muresan, Y. Karabulut, A.I. Cadis, I. Perhaita, A. Canimoglu, J.G. Guinea, L.B. Tudoran, D. Silipas, M. Ayvacikli, N. Can, J. Alloys Compd. 658, 356 (2016)CrossRefGoogle Scholar
  10. 10.
    G.S.R. Raju, E. Pavitra, J.S. Yu, Ceram. Int. 42, 11099 (2016)CrossRefGoogle Scholar
  11. 11.
    K.H. Kwon, W. Bin Im, H.S. Jang, H.S. Yoo, D.Y. Jeon, lnorg. Chem. 48, 11525 (2009)CrossRefGoogle Scholar
  12. 12.
    Z.Q. Jiang, Y.H. Wang, Electrochem. Solid State Lett. 13, J68 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Jin, Q.P. Wang, H.P. Zhou, L.L. Zhang, J.H. Zhang, Ceram. Int. 42, 3309 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.M. Feng, J.P. Huang, L.L. Liu, J. Liu, X.B. Yu, Dalton Trans. 44, 15006 (2015)CrossRefGoogle Scholar
  15. 15.
    M.B. Xie, G.X. Zhu, R.K. Pan, D.Y. Li, D.J. Hou, J. Phys. D. 49 (2016)Google Scholar
  16. 16.
    X.-m. Zhang, W.-l. Li, K.H. Jang, H.J. Seo, Curr. Appl. Phys. 12, 299 (2012)CrossRefGoogle Scholar
  17. 17.
    F.W. Mo, R.F. Wang, Y.W. Lan, L.Y. Zhou, T. He, X.M. Xu, Synthesis and luminescent properties of M2P2O7:Eu3+ (M = Ca, Sr, Ba) phosphors, in New materials, applications and processes, Pts 1–3, ed. by J.M. Zeng, Y.H. Kim, Y.F. Chen (Trans Tech Publications Ltd, Stafa-Zurich, 2012), p. 978Google Scholar
  18. 18.
    R. Pang, C. Li, S. Zhang, Q. Su, Mater. Chem. Phys. 113, 215 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Xu, L. Wang, D. Jia, L. Liu, Mater. Res. Bull. 70, 691 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Zhou, L. Wang, M. Xu, D. Jia, J. Alloys Compd. 647, 136 (2015)CrossRefGoogle Scholar
  21. 21.
    V.V. Kokhanovskii, Russ. J. Inorg. Chem. 49, 459 (2004)Google Scholar
  22. 22.
    M. Yan, L. Xue, Y. Yan, J. Chin. Silic. Soc. 41, 342 (2013)Google Scholar
  23. 23.
    D. Zakaria, F. Erragh, A. Oudahmane, M. El-Ghozzi, D. Avignant, Acta Crystallogr. Sect. E 66, I76 (2010)CrossRefGoogle Scholar
  24. 24.
    L.H. Jiang, R. Pang, D. Li, W.Z. Sun, Y.L. Jia, H.F. Li, J.P. Fu, C.Y. Li, S. Zhang, Dalton Trans. 44, 17241 (2015)CrossRefGoogle Scholar
  25. 25.
    P.S. May, K.D. Sommer, J. Phys. Chem. A 101, 9571 (1997)CrossRefGoogle Scholar
  26. 26.
    C. Zhao, D.C. Zhu, M.X. Ma, T. Han, M.J. Tu, J. Alloys Compd. 523, 151 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shumian Xu
    • 1
  • Sha-sha Liu
    • 1
  • Cong Zhao
    • 2
  • Tao Han
    • 2
  • Dachuan Zhu
    • 1
    Email author
  1. 1.College of Material Science and EngineeringSichuan UniversityChengduChina
  2. 2.Research Center for Material Interdisciplinary ScienceChongqing University of Arts and Science, Chongqing Engineering Research Center for Optoelectronic Materials and DevicesChongqingChina

Personalised recommendations