Phenomenological model of the magnetocaloric effect and its correlation with critical behavior near room temperature in La0.7Ca0.2Sr0.1MnO3 manganite

  • Asma EzaamiEmail author
  • N. Ouled Nasser
  • W. Cheikhrouhou-Koubaa
  • A. Cheikhrouhou


In this paper, we investigate the field dependence of the magnetocaloric properties of La0.7Ca0.2Sr0.1MnO3 powder sample using a phenomenological model. Our compound was elaborated by the conventional solid state reaction. The model parameters were determined from the magnetization data and were used to give better fits to magnetic transition and to calculate the magnetocaloric quantities. The magnetocaloric parameters such as the maximum of the magnetic entropy change \(\Delta S_M^{max}\) and the relative cooling power RCP, have been determined from the calculation of the magnetization as a function of temperature under several magnetic applied field. Thus, from the magnetocaloric results, such as RCP ≈ b(μ0H)1+1/δ and Tpeak − TC ≈ b (µ0H)1/Δ, the critical exponents values related to the magnetic transition have been determined. The estimated results are close to those expected by the tricritical mean-field model. Furthermore, the values of the ferromagnetic transition temperature TC, as well as the critical exponents β, γ and δ obtained by the theoretical model, are compared with those obtained by other various techniques (such as the modified Arrott plots, the Kouvel–Fisher method and the critical isotherm analysis). A good agreement has been found in the vicinity of the Curie temperature.


Curie Temperature Manganite Critical Exponent Magnetocaloric Effect Magnetic Entropy Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.


  1. 1.
    A. Ezaami, E. Sellami-Jmal, I. Chaaba, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite. J. Alloys Compd. 685, 710 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Mleiki, S. Othmani, W. Cheikhrouhou-KoubaA, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Critical behavior near the ferromagnetic-paramagnetic phase transition in Sm0.55-xPrxSr0.45MnO3 compounds (0.3 ≤ x ≤ 0.4). J. Alloys Compd. 648, 1043 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Enhanced relative cooling power in Ga-doped La0.7(Sr,Ca)0.3MnO3 with ferromagnetic-like canted state. RSC Adv. 6, 54299 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Riahi, I. Messaoui, W. Cheikhrouhou-Koubaa a, S. Mercone, B. Leridon, M. Koubaa, A. Cheikhrouhou, Effect of synthesis route on the structural, magnetic and magnetocaloric properties of La0.78Dy0.02Ca0.2MnO3 manganite: a comparison between sol-gel, high-energy ball-milling and solid state process. J. Alloys Compd. 688, 1028 (2016)CrossRefGoogle Scholar
  5. 5.
    E. Sellami-Jmal, A. Ezaami, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Prediction of magnetocaloric effect in lanthanum deficiency with phenomenological model. J. Supercond. Nov. Magn. (2016). doi: 10.1007/s10948-016-3794-6 Google Scholar
  6. 6.
    K.A. GschneidnerJr, V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)CrossRefGoogle Scholar
  7. 7.
    M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627 (2015)CrossRefGoogle Scholar
  9. 9.
    I. Sfifir, A. Ezaami, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties in La0.7-xDyxSr0.3MnO3 manganites (x = 0. 00, 0.01 and 0.03). J. Alloys Compd. 696, 760 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Makni-Chakroun, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Impact of a small amount of vacancy in both lanthanum and calcium on the physical properties of nanocrystalline La0.7Ca0.3MnO3 manganite. J. Alloys Compd. 650, 421 (2015)CrossRefGoogle Scholar
  11. 11.
    Y.D. Zhang, T.L. Phan, D.S. Yang, S.C. Yu, Local structure and magnetocaloric effect for La0.7Sr0.3Mn1-xNixO3, Curr. Appl. Phys. 12, 803 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Ezaami, N. Ouled Nasser, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou E.K. Hlil, Physical properties of La0. 7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid state process, J. Mater. Sci. (2017). doi: 10.1007/s10854-016-5969-0 Google Scholar
  13. 13.
    I. Messaoui, K. Riahi, W. Cheikhrouhou–Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Phenomenological model of the magnetocaloric effect on Nd0.7Ca0.15Sr0.15MnO3 compound prepared by ball milling method. Ceram. Int. 42, 6825 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Ezaami, E. Sellami-Jmal,·W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Phenomenological model of magnetocaloric effect in La0.7Ca0.2Ba0.1MnO3 manganite around room temperature, J. Supercond. Nov. Magn. (2016). doi: 10.1007/s10948-016-3887-2 Google Scholar
  15. 15.
    J. Shen, B. Gao, Q.Y. Dong, Y.X. Li, F.X. Hu, J.R. Sun, B.G. Shen, Magnetocaloric effect in La1-xPrxFe10.7Co0.8Si1.5 compounds near room temperature. J. Phys. D 41, 245005 (2008)CrossRefGoogle Scholar
  16. 16.
    Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du, Magnetocaloric effect in perovskite manganites La0.7-xNdxCa0.3MnO3 and La0.7Ca0.3MnO3. J. Appl. Phys. 90, 5689 (2001)CrossRefGoogle Scholar
  17. 17.
    Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, D. Feng, Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett. 78, 1142 (1997)CrossRefGoogle Scholar
  18. 18.
    P.G. Radaelli, D.E. Cox, M. Marizio, S.W. Sheong, P.E. Schiffer, A.P. Ramirez, Simultaneous structural, magnetic, and electronic transitions in La1-xCaxMnO3 with x = 0.25 and 0.50. Phys. Rev. Lett. 75, 4488 (1995)CrossRefGoogle Scholar
  19. 19.
    W. Chen, W. Zhong, D.I. Hou, R.W. Gao, W.C. Feng, M.G. Zhu, Y.W. Du, Preparation and magnetocaloric effect of self-doped La0.8-x Na0.2xMnO3+δ (=vacancies) polycrystal, J. Phys. 14, 11889 (2002)Google Scholar
  20. 20.
    M. Pekala, Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline manganites La1-xMxMnO3 (M = Ca, Sr). J. Appl. Phys. 108, 113913 (2010)CrossRefGoogle Scholar
  21. 21.
    V. Franco, J.S. Blazquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Critical properties in La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol gel and solid-state process. J. Alloys Compd. 693, 658 (2017)CrossRefGoogle Scholar
  23. 23.
    V. Franco, A. Conde, J.M. Romero-Enrique, S.J. Bl´azquez, A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J. Phys. 20, 285207 (2008)Google Scholar
  24. 24.
    B. Widom, Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43, 3892 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Asma Ezaami
    • 1
    Email author
  • N. Ouled Nasser
    • 1
  • W. Cheikhrouhou-Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  1. 1.Laboratory of Technologies for Smarts Systems, Numeric Research CenterSfax TechnoparkSakiet-ezzitTunisia

Personalised recommendations