Excellent electrochromic properties of tungsten oxide films with a mesoporous structure

  • ShuJuan Lu
  • Chang Wang
  • Hao WangEmail author
  • JingBing Liu
  • Hui Yan


Sol–gel derived tungsten oxide (WO3) films have been deposited by dip coating route using a small amount of polyethylene glycol (PEG) introduced into peroxotungstic acid precursor sol as the precursor solution, followed by thermal treatment in air. The influence of PEG additive and annealing temperature on the structural and electrochromic properties have been characterized. The PEG plays an important role in hindering the formation of large crystals and inter-connected polycrystalline structure, and also plays the role of a structure-directing agent, providing an amorphous WO3 film when annealed at 300 °C. Compared with neat WO3 film, the PEG-modified WO3 film exhibits much higher optical contrast and higher coloration efficiency. More importantly, WO3/PEG film shows excellent cycling stability because its mesoporous structure acts as a buffer layer to accommodate the volume change brought by ion insertion/extraction, and therefore the film can expand and shrink much more easily without causing degradation of WO3 in long-term electrochemical cycling.


Cycling Stability Tungsten Trioxide Electrochromic Property Smart Window Coloration Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Grätzel, Materials science: ultrafast colour displays. Nature 409, 575–576 (2001). doi: 10.1038/35054655 CrossRefGoogle Scholar
  2. 2.
    C.G. Granqvist, Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014). doi: 10.1016/j.tsf.2014.02.002 CrossRefGoogle Scholar
  3. 3.
    C. Park, S. Seo, H. Shin, B. D. Sarwade, J. Na, E. Kim, Switchable silver mirrors with long memory effects. Chem. Sci. 6, 596–602 (2015). doi: 10.1039/C4SC01912A CrossRefGoogle Scholar
  4. 4.
    K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384–8389 (2012). doi: 10.1039/C2EE21643D CrossRefGoogle Scholar
  5. 5.
    G.A. Niklasson, C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem 17, 127–156 (2007). doi: 10.1039/B612174H CrossRefGoogle Scholar
  6. 6.
    C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energ. Mat. Sol. C 60, 201–262 (2000). doi: 10.1016/S0927-0248(99)00088-4 CrossRefGoogle Scholar
  7. 7.
    M. Deepa, T. Saxena, D. Singh, K. Sood, S. Agnihotry, Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties. Electrochimica Acta 51, 1974–1989 (2006). doi: 10.1016/j.electacta.2005.06.027 CrossRefGoogle Scholar
  8. 8.
    J. Cronin, D. Tarico, J. Tonazzi, A. Agrawal, S. Kennedy, Microstructure and properties of sol-gel deposited WO3 coatings for large area electrochromic windows. Sol. Energ. Mat. Sol. C 29, 371–386 (1993). doi: 10.1016/0927-0248(93)90096-L CrossRefGoogle Scholar
  9. 9.
    G. Cai, J. Tu, D. Zhou, X. Wang, C. Gu, Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol. Energ. Mat. Sol. C 124, 103–110 (2014). doi: 10.1016/j.solmat.2014.01.042 CrossRefGoogle Scholar
  10. 10.
    A. Karuppasamy, A. Subrahmanyam, Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering. J. Appl. Phys. 101, 113522 (2007). doi: 10.1063/1.2737957 CrossRefGoogle Scholar
  11. 11.
    S.-J. Wang, C.-H. Chen, R.-M. Ko, Y.-C. Kuo, C.-H. Wong, C.-H. Wu, K.-M. Uang, T.-M. Chen, B.-W. Liou, Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process. Appl. Phys. Lett. 86, 26310–26313 (2005). doi: 10.1063/1.1957115 Google Scholar
  12. 12.
    A. Subrahmanyam, A. Karuppasamy, Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol. Energ. Mat. Sol. C 91, 266–274 (2007). doi: 10.1016/j.solmat.2006.09.005 CrossRefGoogle Scholar
  13. 13.
    J. Zhang, X. Wang, X. Xia, C. Gu, Z. Zhao, J. Tu, Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers. Electrochim. Acta 55, 6953–6958 (2010). doi: 10.1016/j.electacta.2010.06.082 CrossRefGoogle Scholar
  14. 14.
    A. Srivastava, M. Deepa, S. Singh, R. Kishore, S. Agnihotry, Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films. Solid State Ionics 176, 1161–1168 (2005). doi: 10.1016/j.ssi.2004.10.006 CrossRefGoogle Scholar
  15. 15.
    J.Z. Ou, S. Balendhran, M.R. Field, D.G. McCulloch, A.S. Zoolfakar, R.A. Rani, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4, 5980–5988 (2012). doi: 10.1039/C2NR31203D CrossRefGoogle Scholar
  16. 16.
    N. Sharma, M. Deepa, P. Varshney, S. Agnihotry, Influence of organic additive on the morphological, electrical and electrochromic properties of sol-gel derived WO3 coatings. J Sol-Gel Sci. Technol. 18, 167–173 (2000). doi: 10.1023/A:1008721121677 CrossRefGoogle Scholar
  17. 17.
    D. Taylor, J. Cronin, L. Allard, D.P. Birnie, Microstructure of laser-fired, sol-gel-derived tungsten oxide films. Chem. Mater 8, 1396–1401 (1996). doi: 10.1021/cm950570b CrossRefGoogle Scholar
  18. 18.
    Y. Fang, X. Sun, H. Cao, Influence of PEG additive and annealing temperature on structural and electrochromic properties of sol–gel derived WO3 films. J. Sol-Gel Sci. Technol. 59, 145–152 (2011). doi: 10.1007/s10971-011-2472-1 CrossRefGoogle Scholar
  19. 19.
    T. Kudo, H. Okamoto, K. Matsumoto, Y. Sasaki, Peroxopolytungstic acids synthesized by direct reaction of tungsten or tungsten carbide with hydrogen peroxide. Inorg. Chim. Acta 111, L27–L28 (1986)CrossRefGoogle Scholar
  20. 20.
    W. Wang, Y. Pang, S.N. Hodgson, Preparation, characterisation and electrochromic property of mesostructured tungsten oxide films via a surfactant templated sol–gel process from tungstic acid. J. Sol-Gel Sci. Technol. 54, 19–28 (2010). doi: 10.1007/s10971-010-2152-6 CrossRefGoogle Scholar
  21. 21.
    S. Badilescu, P. Ashrit, Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ionics 158, 187–197 (2003). doi: 10.1016/S0167-2738(02)00764-6 CrossRefGoogle Scholar
  22. 22.
    S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, E.W. McFarland, Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15, 1269–1273 (2003). doi: 10.1002/adma.200304669 CrossRefGoogle Scholar
  23. 23.
    J. He, X. Yang, D. Evans, X. Duan, New methods to remove organic templates from porous materials. Mater. Chem. Phys. 77, 270–275 (2003). doi: 10.1016/S0254-0584(01)00557-0 CrossRefGoogle Scholar
  24. 24.
    C.M. Amb, A.L. Dyer, J.R. Reynolds, Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 23, 397–415 (2010). doi: 10.1021/cm1021245 CrossRefGoogle Scholar
  25. 25.
    R. Romero, E. Dalchiele, F. Martín, D. Leinen, J. Ramos-Barrado, Electrochromic behaviour of Nb2O5 thin films with different morphologies obtained by spray pyrolysis. Sol. Energ. Mat. Sol. C 93, 222–229 (2009). doi: 10.1016/j.solmat.2008.10.012 CrossRefGoogle Scholar
  26. 26.
    M. Deepa, A. Srivastava, K. Sood, A. Murugan, Nanostructured tungsten oxide-poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) hybrid films: synthesis, electrochromic response, and durability characteristics. J. Electrochem. Soc. 155, D703–D710 (2008). doi: 10.1149/1.2975388 CrossRefGoogle Scholar
  27. 27.
    G. Valverde-Aguilar, G. Prado-Prone, P. Vergara-Aragón, J. Garcia-Macedo, P. Santiago, L. Rendón, Photoconductivity studies on nanoporous TiO2/dopamine films prepared by sol–gel method. Appl. Phys. A 116, 1075–1084 (2014). doi: 10.1007/s00339-013-8187-0 CrossRefGoogle Scholar
  28. 28.
    K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, (Recommendations 1984). Pure Appl. Chem. (1985). doi: 10.1351/pac198557040603 Google Scholar
  29. 29.
    C.G. Granqvist, Handbook of inorganic electrochromic materials. (Elsevier, Amsterdam, 1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • ShuJuan Lu
    • 1
  • Chang Wang
    • 1
  • Hao Wang
    • 1
    Email author
  • JingBing Liu
    • 1
  • Hui Yan
    • 1
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations