Facile synthesis of SrFe12O19 nanoparticles and its photocatalyst application

  • Kheirollah MohammadiEmail author
  • Masoud SadeghiEmail author
  • Rohollah Azimirad


The strontium hexaferrite (SrFe12O19) nanoparticles have been successfully synthesized by co-precipitation route. The effect of various parameters such as calcination temperature and chelating agents were screened to achieve optimum condition. Different chelating agents such as amino acids (proline, alanine, aspartic acid) and surfactants (SDBS, PVP, and EDTA) were used. Compared with the amino acids, the surfactants increase the particle size and the best result was observed for alanine. The SrFe12O19 nanoparticles showed enhanced photocatalytic activity in the degradation of methyl orange under visible light irradiation (λ > 400 nm). The degradation rates of the methyl orange were measured to be as high as 95% in 220 min. The nanoparticles were also characterized by several techniques including FT-IR, XRD, SEM, and VSM. The VSM measurement showed a saturation magnetization value (Ms) of 32 emu/g. The SEM images proposed that the particles are almost spherical with an average particle size of 90 nm.


Photocatalytic Activity Methyl Orange Visible Light Irradiation Vibrate Sample Magnetometer SrFe12O19 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to council of University of Arak for providing financial support to undertake this work.


  1. 1.
    J. Safari, F. Azizi, M. Sadeghi, New J. Chem., 39, 1905 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Safari, L. Javadian, RSC Adv. 5, 104973 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Safari, Z. Zarnegar, Ultrason. Sonochem. 21, 1132 (2014)CrossRefGoogle Scholar
  4. 4.
    S. M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. 26, 6086 (2015)Google Scholar
  5. 5.
    M. Ramezani, A. Sobhani-Nasab, S. M. Hosseinpour-Mashkani, J. Mater. Sci. 26, 4848 (2016)Google Scholar
  6. 6.
    M. Sadeghi, J. Safari, Z. Zarnegar, RSC Adv. 6, 64749 (2016)CrossRefGoogle Scholar
  7. 7.
    M.N. Ashiq, M.J. Iqbal, I.H. Gul, J. Alloys Compd. 487, 341 (2009)CrossRefGoogle Scholar
  8. 8.
    R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Bai, W. Zhang, L. Qiao, J. Zhou, J. Adv. Ceram. 1, 100 (2012)CrossRefGoogle Scholar
  10. 10.
    V.V. Pankov, M. Pernet, P. Germi, P. Molard, J. Magn. Magn. Mater. 120, 69 (1993)CrossRefGoogle Scholar
  11. 11.
    M. Stingaciu, M. Topole, P. McGuiness, M. Christensen, Sci. Rep. 5, 14112 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Wanga, Q. Chena, S. Che, J. Magn. Magn. Mater. 280, 281 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Thakur, R.R. Singh, P.B. Barman, Mater. Chem. Phys. 141, 562 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Lechevallier, J.M. Le Breton, A. Morel, P. Tenaud, J. Phys. Condens. Matter. 20, 175203 (2008)CrossRefGoogle Scholar
  15. 15.
    P. Shepherd, K. Mallick, R. Green, J. Mater. Sci. 18, 527 (2007)Google Scholar
  16. 16.
    C. Surig, K.A. Hempel, D. Bonnenberg, IEEE Trans. Magn. 30, 4092 (1994)CrossRefGoogle Scholar
  17. 17.
    R. B. Jotania, R. B. Khomane, C. C. Chauhan, S. K. Menon, B. D. Kulkarni, J. Magn. Magn. Mater. 320, 1095 (2008)CrossRefGoogle Scholar
  18. 18.
    T. Gonzalez-Carreno, M.P. Morales, C.J. Serna, Mater. Lett. 43, 97 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Muller, J. Magn. Magn. Mater. 120, 61 (1993)CrossRefGoogle Scholar
  20. 20.
    A. Ataie, I.R. Harris, C.B. Ponton, J. Mater. Sci. 30, 1429 (1995)CrossRefGoogle Scholar
  21. 21.
    M. Sadeghi, J. Mater. Sci. 27, 5796 (2016)Google Scholar
  22. 22.
    A. Sobhani-Nasab, M. Sadeghi, J. Mater. Sci. 27, 7933–7938 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Malek Ashtar UniversityTehranIran
  2. 2.University of KashanKashanIran

Personalised recommendations