Advertisement

Correlation between the physical properties and the novel applications of Mg0.7Cu0.3Fe2O4 nano-ferrites

  • Ebtesam E. Ateia
  • Amira T. MohamedEmail author
Article
  • 106 Downloads

Abstract

Nano-ferrite of the general formula Mg0.7Cu0.3Fe2O4 was prepared by citrate-gel auto combustion method. The structure was studied by X-ray diffraction, Brunauer–Emmet–Teller, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy analyses. The crystallite size of the investigated nano ferrite was ≅39 nm. The magnetic hysteresis measurements at different temperatures (100, 170, 240, and 300 K) were performed using a vibrating sample magnetometer. A correlation between magnetic behavior and lattice strain has been established. Arrott plot has been employed to understand the magnetic behavior of nano-crystalline Mg0.7Cu0.3Fe2O4. The magnetic susceptibility was carried out using Faraday’s method. Magnetic constants such as Curie temperature, effective magnetic moment, saturation magnetization, and coercivity were obtained and reported. Based on UV diffuse reflectance spectroscopy studies, the optical band gaps are in the range from (1.3–1.9 eV), hence the investigated samples could act as visible light driven photo catalysts.

Keywords

Ferrite CoFe2O4 Field Emission Scanning Electron Microscopy Image CuFe2O4 Magnetic Entropy Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Krupicka, P. Novak, in Ferromagnetic Materials, vol. 3, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1982)Google Scholar
  2. 2.
    M.A. Gabal, Y.M. AlAngari, H.M. Zaki, J. Magn. Magn. Mater. 363, 6–12 (2014)CrossRefGoogle Scholar
  3. 3.
    A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, J. Magn. Magn. Mater. 322, 3823–3827 (2010)CrossRefGoogle Scholar
  4. 4.
    T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Ceram. Int. 36, 275–281 (2010)CrossRefGoogle Scholar
  5. 5.
    M.A. Amer, T. Meaz, M. Yehia, S.S. Attalah, F. Fakhry, J. Alloys Compd. 633, 448–455 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Ateia, M.A. Ahmed, R.M. Ghouniem, Solid State Sci. 31, 1–8 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, J. Phys. B 348, 317–328 (2004)CrossRefGoogle Scholar
  8. 8.
    S.A. Saafan, T.M. Meaz, E.H. El-Ghazzawy, M.K. El Nimr, M.M. Ayad, M. Bakr, J. Magn. Magn. Mater. 322, 2369–2374(2010)CrossRefGoogle Scholar
  9. 9.
    S. Singhal, K. Chandra, J. Solid State Chem. 180, 296–300 (2007)CrossRefGoogle Scholar
  10. 10.
    J.C. Aphesteguy, A. Damiani, D. DiGiovanni, S.E. Jacobo, J. Phys. B 404, 2713–2716 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Goldman, in Modern Ferrite Technology, (Marcel Dekker Inc., New York, 1993)Google Scholar
  12. 12.
    E. Girgis, M.M.S. Wahsh, A.G.M. Othman, L. Bandhu, K.V. Rao, Nanoscale Res. Lett. (2011). doi: 10.1186/1556-276X-6-460 Google Scholar
  13. 13.
    F.K. Butt, A.S. Bandarenka, J. Solid State Electrochem. 20, 2915–2928 (2016)CrossRefGoogle Scholar
  14. 14.
    F.K. Butt, C. Cao, F. Idrees, M. Tahir, R. Hussain, R. Ahmed, W.S. Khan, R. Hussain, R. Ahmed, W.S. Khan, Int. J. Hydrogen Energy (2015). doi: 10.1016/j.ijhydene.2015.05.086 Google Scholar
  15. 15.
    M. Bañobre-López, A. Teijeiro, J. Rivas, Rep. Pract. Oncol. Radiother. 18, 397–400 (2013)CrossRefGoogle Scholar
  16. 16.
    V.T. Vader, J. Mater. Sci. Mater. Electron 26, 66–71 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Schüth, K.S.W. Sing, J. Weitkamp, in Handbook of Porous Solids 1, (Wiley-VCH, Weinheim, 2002)CrossRefGoogle Scholar
  18. 18.
    A.M. Wahba, M.B. Mohamed, Ceram. Int. 40, 6127–6135 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, WJNSE 4, 21–28 (2014)CrossRefGoogle Scholar
  20. 20.
    E.E. Ateia, A.T. Mohamed, J. Magn. Magn. Mater. 426, 217–224 (2017)CrossRefGoogle Scholar
  21. 21.
    J.M. Zielinski, L. Kettle, (Intertek Pharmaceutical Services, 2013), http://www.intertek.com/pharmaceutical.
  22. 22.
    E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, J. Mater. Sci. 28, 241–249(2017)Google Scholar
  23. 23.
    S.K. Sharma, R. Kumar, V.V.S. Kumar, S.N. Dolia, IJPAP 45, 16–20(2007)Google Scholar
  24. 24.
    B. Viswanathan, V.R.K. Murthy, in Ferrite Materials: Science and Technology, (Narosa Publishing House, Chennai, 1990)Google Scholar
  25. 25.
    A. Xia, S. Liu, C. Jin, S. Su, J. Mater. Sci. Mater. Electron 24, 4166–4169 (2013)CrossRefGoogle Scholar
  26. 26.
    K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Hindawi Publishing Corporation, J. Mater. (2014). doi: 10.1155/2014/184340 Google Scholar
  27. 27.
    H.A. Haus, J.R. Melcher, in Electromagnetic Fields and Energy (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu. License: Creative Commons Attribution-NonCommercial-Share Alike.
  28. 28.
    A. Zaidi, A. Dhahri, J. Dhahri, E. K. Hlil, M. Zaidi, J. Supercond. Novel Magn. (2016). doi: 10.1007/s10948-016-3573-4 Google Scholar
  29. 29.
    M.L. Kahn, Z.J. Zhang, Appl. Phys. Lett. 78, 3651–3653 (2001)CrossRefGoogle Scholar
  30. 30.
    A.M. Tishin, J. Magn. Magn. Mater. 316, 351–357 (2007)CrossRefGoogle Scholar
  31. 31.
    A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Ceram. Int. 39, 5909–5917 (2013)CrossRefGoogle Scholar
  32. 32.
    F.K. Butt, M. Mirza, C. Cao, F. Idrees, M. Tahir, M. Safdar, Z. Ali, M. Tanveera, I. Aslam, CrystEngComm 16(17), 3470–3473 (2014)CrossRefGoogle Scholar
  33. 33.
    R. Sharma, S. Bansal, S. Singha, RSC Adv. 5, 6006–6018 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations