Skip to main content
Log in

Correlation between the physical properties and the novel applications of Mg0.7Cu0.3Fe2O4 nano-ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-ferrite of the general formula Mg0.7Cu0.3Fe2O4 was prepared by citrate-gel auto combustion method. The structure was studied by X-ray diffraction, Brunauer–Emmet–Teller, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy analyses. The crystallite size of the investigated nano ferrite was ≅39 nm. The magnetic hysteresis measurements at different temperatures (100, 170, 240, and 300 K) were performed using a vibrating sample magnetometer. A correlation between magnetic behavior and lattice strain has been established. Arrott plot has been employed to understand the magnetic behavior of nano-crystalline Mg0.7Cu0.3Fe2O4. The magnetic susceptibility was carried out using Faraday’s method. Magnetic constants such as Curie temperature, effective magnetic moment, saturation magnetization, and coercivity were obtained and reported. Based on UV diffuse reflectance spectroscopy studies, the optical band gaps are in the range from (1.3–1.9 eV), hence the investigated samples could act as visible light driven photo catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Krupicka, P. Novak, in Ferromagnetic Materials, vol. 3, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1982)

    Google Scholar 

  2. M.A. Gabal, Y.M. AlAngari, H.M. Zaki, J. Magn. Magn. Mater. 363, 6–12 (2014)

    Article  Google Scholar 

  3. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, J. Magn. Magn. Mater. 322, 3823–3827 (2010)

    Article  Google Scholar 

  4. T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Ceram. Int. 36, 275–281 (2010)

    Article  Google Scholar 

  5. M.A. Amer, T. Meaz, M. Yehia, S.S. Attalah, F. Fakhry, J. Alloys Compd. 633, 448–455 (2015)

    Article  Google Scholar 

  6. E. Ateia, M.A. Ahmed, R.M. Ghouniem, Solid State Sci. 31, 1–8 (2014)

    Article  Google Scholar 

  7. S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, J. Phys. B 348, 317–328 (2004)

    Article  Google Scholar 

  8. S.A. Saafan, T.M. Meaz, E.H. El-Ghazzawy, M.K. El Nimr, M.M. Ayad, M. Bakr, J. Magn. Magn. Mater. 322, 2369–2374(2010)

    Article  Google Scholar 

  9. S. Singhal, K. Chandra, J. Solid State Chem. 180, 296–300 (2007)

    Article  Google Scholar 

  10. J.C. Aphesteguy, A. Damiani, D. DiGiovanni, S.E. Jacobo, J. Phys. B 404, 2713–2716 (2009)

    Article  Google Scholar 

  11. A. Goldman, in Modern Ferrite Technology, (Marcel Dekker Inc., New York, 1993)

    Google Scholar 

  12. E. Girgis, M.M.S. Wahsh, A.G.M. Othman, L. Bandhu, K.V. Rao, Nanoscale Res. Lett. (2011). doi:10.1186/1556-276X-6-460

    Google Scholar 

  13. F.K. Butt, A.S. Bandarenka, J. Solid State Electrochem. 20, 2915–2928 (2016)

    Article  Google Scholar 

  14. F.K. Butt, C. Cao, F. Idrees, M. Tahir, R. Hussain, R. Ahmed, W.S. Khan, R. Hussain, R. Ahmed, W.S. Khan, Int. J. Hydrogen Energy (2015). doi:10.1016/j.ijhydene.2015.05.086

    Google Scholar 

  15. M. Bañobre-López, A. Teijeiro, J. Rivas, Rep. Pract. Oncol. Radiother. 18, 397–400 (2013)

    Article  Google Scholar 

  16. V.T. Vader, J. Mater. Sci. Mater. Electron 26, 66–71 (2015)

    Article  Google Scholar 

  17. F. Schüth, K.S.W. Sing, J. Weitkamp, in Handbook of Porous Solids 1, (Wiley-VCH, Weinheim, 2002)

    Book  Google Scholar 

  18. A.M. Wahba, M.B. Mohamed, Ceram. Int. 40, 6127–6135 (2014)

    Article  Google Scholar 

  19. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, WJNSE 4, 21–28 (2014)

    Article  Google Scholar 

  20. E.E. Ateia, A.T. Mohamed, J. Magn. Magn. Mater. 426, 217–224 (2017)

    Article  Google Scholar 

  21. J.M. Zielinski, L. Kettle, (Intertek Pharmaceutical Services, 2013), http://www.intertek.com/pharmaceutical.

  22. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, J. Mater. Sci. 28, 241–249(2017)

    Google Scholar 

  23. S.K. Sharma, R. Kumar, V.V.S. Kumar, S.N. Dolia, IJPAP 45, 16–20(2007)

    Google Scholar 

  24. B. Viswanathan, V.R.K. Murthy, in Ferrite Materials: Science and Technology, (Narosa Publishing House, Chennai, 1990)

  25. A. Xia, S. Liu, C. Jin, S. Su, J. Mater. Sci. Mater. Electron 24, 4166–4169 (2013)

    Article  Google Scholar 

  26. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Hindawi Publishing Corporation, J. Mater. (2014). doi:10.1155/2014/184340

    Google Scholar 

  27. H.A. Haus, J.R. Melcher, in Electromagnetic Fields and Energy (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu. License: Creative Commons Attribution-NonCommercial-Share Alike.

  28. A. Zaidi, A. Dhahri, J. Dhahri, E. K. Hlil, M. Zaidi, J. Supercond. Novel Magn. (2016). doi:10.1007/s10948-016-3573-4

    Google Scholar 

  29. M.L. Kahn, Z.J. Zhang, Appl. Phys. Lett. 78, 3651–3653 (2001)

    Article  Google Scholar 

  30. A.M. Tishin, J. Magn. Magn. Mater. 316, 351–357 (2007)

    Article  Google Scholar 

  31. A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Ceram. Int. 39, 5909–5917 (2013)

    Article  Google Scholar 

  32. F.K. Butt, M. Mirza, C. Cao, F. Idrees, M. Tahir, M. Safdar, Z. Ali, M. Tanveera, I. Aslam, CrystEngComm 16(17), 3470–3473 (2014)

    Article  Google Scholar 

  33. R. Sharma, S. Bansal, S. Singha, RSC Adv. 5, 6006–6018 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira T. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Mohamed, A.T. Correlation between the physical properties and the novel applications of Mg0.7Cu0.3Fe2O4 nano-ferrites. J Mater Sci: Mater Electron 28, 10035–10041 (2017). https://doi.org/10.1007/s10854-017-6762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6762-4

Keywords

Navigation