Photo and electroluminescence of a platinum porphyrin doping of complexes with two metal cores

  • Mohammad JanghouriEmail author


In this paper, four new complexes with two metal cores [2Sm, 2Sn, 2Zn and 2Pb] were prepared and utilized as host material in in the electroluminescence (EL) devices. Devices with two metal cores and with the structure of ITO/PEDOT: PSS (60 nm)/PVK (55 nm)/[2Sm, 2Sn, 2Zn and 2Pb]: %8 [2,5PtTPP] (45 nm)/Al (200 nm) were fabricated, A blue–green photoluminescence (PL) emission with a blue shift compared to the 2,5PtTPP was observed. 2,5PtTPP doped in 2Sm and 2Sn showed more pure red color compared to 2Zn and 2Pb based devices. We believe that energy transfer occurring at 2,5PtTPP/[2Sm, 2Sn] molecules is responsible for the red color in the EL of the device. The electronic effect of two metal cores of complexes influenced the maximum current density, brightness, and luminous efficiency of the devices. Finally, we have demonstrated the samarium complex of 8-hydroxyquinoline is a promising host material for red OLEDs with high efficiency and has a simple device structure.


Porphyrin High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Soret Band Metal Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors would like to thank Urmia University of Technology and Shahid Beheshti University for its support.


  1. 1.
    T. Tanaka, A. Osuka, Chem. Soc. Rev. 44, 943 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Higashino, H. Imahori, Dalton Trans. 44, 448 (2015)CrossRefGoogle Scholar
  3. 3.
    M.H. Andreasson, J. Martensson, T.G. Andersson, Curr. Appl. Phys. 8, 163 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Janghouri, E. Mohajerani, A. Khabazi et al., J. Lumin. 140, 7 (2013)CrossRefGoogle Scholar
  5. 5.
    X.H. Zhang, Z.Y. Xie, F.P. Wu, L.L. Zhou, O.Y. Wong, C.S. Lee, H.L. Kwong, S.T. Lee, S.K. Wu, Chem. Phys. Lett. 382, 561 (2003)CrossRefGoogle Scholar
  6. 6.
    B.S. Li, J. Li, Y.Q. Fu, J. Am. Chem. Soc. 126, 3430 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Sakakibara, S. Okutsu, T. Enokida, T. Tani, Thin Solid Films 29, 363 (2000)Google Scholar
  8. 8.
    Y. Hamada, IEEE Trans. Electron Dev. 44, 1208 (1997)CrossRefGoogle Scholar
  9. 9.
    J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama, Appl. Phys. Lett. 65, 2124 (1994)CrossRefGoogle Scholar
  10. 10.
    S. Kappaun, S. Sax, S. Eder, K.C. Moller, K. Waich, F. Niedermair et al., Chem. Mater. 19, 1209 (2007)CrossRefGoogle Scholar
  11. 11.
    R.C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S.R. Forrest, M.E. Thompson, Chem. Mater. 11, 3709 (1999)CrossRefGoogle Scholar
  12. 12.
    V.A. Montes, C. Perez-Bolıvar, N. Agarwal, J. Shinar, P. Anzenbacher, J. Am. Chem. Soc. 128, 12436 (2006)CrossRefGoogle Scholar
  13. 13.
    M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson et al., Nature 395, 151 (1998)CrossRefGoogle Scholar
  14. 14.
    M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 75, 4 (1999)CrossRefGoogle Scholar
  15. 15.
    W.Y. Wong, C.L. Ho, Coord. Chem. Rev. 253, 1709 (2009)CrossRefGoogle Scholar
  16. 16.
    W.Y. Wong, C.L. Ho, J. Mater. Chem. 19, 4457 (2009)CrossRefGoogle Scholar
  17. 17.
    G.J. Zhou, W.Y. Wong, X.L. Yang, Chem. Asian J. 6, 1706 (2011)CrossRefGoogle Scholar
  18. 18.
    Q. Zhao, C.Y. Jiang, M. Shi, F.Y. Li, T. Yi, Y. Cao, C.H. Huang, Organometallics 25, 3631 (2006)CrossRefGoogle Scholar
  19. 19.
    C.Y. Chang, S.N. Hsieh, T.C. Wen, T.F. Guo, C.H. Cheng, Chem. Phys. Lett. 418, 50 (2006)CrossRefGoogle Scholar
  20. 20.
    C.L. Ho, C.H. Chui, W.Y. Wong, S.M. Aly, D. Fortin, P.D. Harvey, B. Yao, Z. Xie, L. Wang Macro, Chem. Phys. 210, 1786 (2009)Google Scholar
  21. 21.
    H. Jang, L.M. Do, Y. Kim, J.G. Kim, T. Zyung, Y. Do, Synth. Met. 121, 1669 (2001)CrossRefGoogle Scholar
  22. 22.
    R. Ballardini, G. Varani, M.T. Indelli, F. Scandola, Inorg. Chem. 25, 3858 (1986)CrossRefGoogle Scholar
  23. 23.
    J. Yu, Z. Chen, Y. Sakuratani, H. Suzuki, M. Tokita, S. Miyata, Jpn. J. Appl. Phys. 38, 6762 (1999)CrossRefGoogle Scholar
  24. 24.
    Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, K. Shibata, Jpn. J. Appl. Phys. 32, 514 (1993)CrossRefGoogle Scholar
  25. 25.
    J.C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048 (2005)CrossRefGoogle Scholar
  26. 26.
    S.V. Eliseeva, J.C.G. Bunzli, Chem. Soc. Rev. 39, 189 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J.C. Rodríguez-Ubis, J. Kankare, J. Lumin. 75, 149 (1997)CrossRefGoogle Scholar
  28. 28.
    S. Sato, M. Wada, Bull. Chem. Soc. Jpn. 43, 1955 (1970)CrossRefGoogle Scholar
  29. 29.
    M.-H. Ha-Thi, J.A. Delaire, V. Michelet, I. Leray, J. Phys. Chem. A 114, 3264 (2010)CrossRefGoogle Scholar
  30. 30.
    Z. Abedi, M. Janghouri, E. Mohajerani et al., J. Lumin. 147, 9 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Modiri, M. Mohseni, E. Mohajerani, J. Mater. Sci. Mater. Electron. 26. 3649 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Janghouri, E. Mohajerani, M.M. Amini, E. Najafi, J. Lumin. 154, 465 (2014)CrossRefGoogle Scholar
  33. 33.
    E. Najafi, M.M. Amini, E. Mohajerani, M. Janghouri, H. Razavi, H. Khavasi, Inorg. Chim. Acta 399, 119 (2013)CrossRefGoogle Scholar
  34. 34.
    S.K. Behzad, E. Najafia, M.M. Amini, M. Janghouri, E. Mohajeranib, S. Weng Ng, J. Lumin. 156, 219 (2014)CrossRefGoogle Scholar
  35. 35.
    M.M. Amini, E. Najafi, P. Hossein Poor, P. Karami, B. Mohammadi, A. Olyaei, S. Weng Ng, J. Inorg. Organomet. Polym. 25, 1137 (2015)CrossRefGoogle Scholar
  36. 36.
    M.D. Galanin, Luminescence of Molecules and Crystals (Cambridge International Science Publishing, Cambridge, 1996), p. 69Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUrmia University of TechnologyUrmiaIran

Personalised recommendations