Advertisement

Structural and optical properties of inorganic–organic hybrid material of acetanilide tetrachloromercurate(II)

  • Bikram Singh
  • Atul Thakur
  • Mukesh Kumar
  • Sanjay K. Verma
  • Dinesh JasrotiaEmail author
Article
  • 146 Downloads

Abstract

The crystal growth of acetanilide tetrachloromercurate(II), an inorganic–organic hybrid derivative has been achieved by solution growth through slow cooling method. The X-ray diffraction structural analysis of the hybrid material results that the compound exist in orthorhombic space group P212121 with lattice parameters; a = 13.111(2) Ǻ, b = 11.311(2) Ǻ, c = 8.355(6) Ǻ, α = β = γ = 90° and unit cell volume = 1436.24 Ǻ3. The fourier transform infrared spectroscopy profile shows that the C–C and C–N stretching modes of acetanilide ring and the observed spectra falls in mid-infrared range υ(526–2850) cm−1. The field emission scanning electron microscope image confirms that the hybrid material has a prismatic shape with an average granular size of ~25 nm. The energy dispersive X-ray spectroscopy analyzes the elemental proportions of the hybrid materials. Transmission electron microscopy image shows the narrow distribution of nano-spatial agglomeration of secondary interactions in inorganic–organic particles. The optical band gap (Eg = 3.75 eV) as calculated by linear fit profile of Tauc plot for allowed transition predicts that the hybrid material has potential applications in solar cells, electronic and opto-electronic devices.

Keywords

Hybrid Material Solution Growth Acetanilide Organic Hybrid Orthorhombic Space Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The corresponding author (Dinesh Jasrotia) is thankful to University Grants Commission (UGC) for research funding under UGC-Major Research Project No. 42-777 of 2013.

References

  1. 1.
    K.G. Sharp, Adv. Mater. 10, 1243–1248 (1998)CrossRefGoogle Scholar
  2. 2.
    G. Kickelbick (ed.), Hybrid Materials: Synthesis, Characterization and Applications (Wiley-VCH, Weinheim, 2005)Google Scholar
  3. 3.
    Z. Linda, M.D. Hager, S.S. Ulrich, J.H. Matthew, M. Schmitt, J. Popp, B. Dietzek, Mater. Today 17, 57–69 (2014)CrossRefGoogle Scholar
  4. 4.
    A.S. Mahadevi, G.N. Sastry, Chem. Rev. 116, 2775–2825 (2016)CrossRefGoogle Scholar
  5. 5.
    T.K. Dobravc, A. Meden, F. Perdih, New J. Chem. 39, 4265–4277 (2015)CrossRefGoogle Scholar
  6. 6.
    S.I. Stupp, C.P. Liam, Chem. Mater. 26, 507–518 (2013)Google Scholar
  7. 7.
    C. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem. 15, 3559–3592 (2005)Google Scholar
  8. 8.
    P.G. Romero, C. Sanchez (eds.), Functional Hybrid Materials (Wiley-VCH, Weinheim, 2004)Google Scholar
  9. 9.
    G. Kickelbick (ed.), Introduction to Hybrid Materials Hybrid Materials: Synthesis, Characterization, and Applications (Wiley-VCH, Weinheim, 2007)Google Scholar
  10. 10.
    S. Bikram, T. Atul, K. Mukesh, J. Dinesh, S.K. Verma, Ind. J. Appl. Res. 5, 9 (2015)Google Scholar
  11. 11.
    K. Mukesh, S.K. Verma, S. Bikram, T. Atul, K. Ajit, J. Dinesh, Chem. Sci. Tran. 4, 2 (2015)Google Scholar
  12. 12.
    T. Roisnel, J.R. Carvajal, Proceedings of the Seventh European Powder Diffraction Conference EPDIC 7, ed. by R. Delhez, E. J. Mittenmeijer (Trans Tech Publications, Uetikon-Zuerich, 2001), pp. 118–123Google Scholar
  13. 13.
    R. Carvajal, J. Phys. B 192, 55 (1993)CrossRefGoogle Scholar
  14. 14.
    S. Kawazoe, K. Sakamoto, Y. Awamura, T. Maruyama, T. Suzuki, K. Onda, T. Takasu, Beta-form crystal of acetanilide derivative, European Patent EP1932838A2, 18 June 2008Google Scholar
  15. 15.
    L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, L. Li, L. Zhang, J. Solid State Chem. 180, 2095–2101 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Bag, C.R. Raj, J. Mater. Chem. A 2, 17848–17856 (2014)Google Scholar
  17. 17.
    R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj, M.K. Panigrahi, Chem. Commun. 48, 1787–1789 (2012)Google Scholar
  18. 18.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)CrossRefGoogle Scholar
  19. 19.
    K. Wooseok, J. Li, J. Am. Chem. Soc. 130, 8114 (2008)CrossRefGoogle Scholar
  20. 20.
    M.J. Schulz, ‎A.D. Kelkar, ‎M.J. Sundaresan (eds.), Nanoengineering of Structural, Functinal and Smart Materials (Taylor & Francis, Boca Raton, 2005)Google Scholar
  21. 21.
    F. Bourguiba, A. Dhahri, T. Tahri, K. Taibi, J. Dhabri, E.K. Hill, Bull. Mater. Sci. 39, 1765–1776 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bikram Singh
    • 1
  • Atul Thakur
    • 1
  • Mukesh Kumar
    • 2
  • Sanjay K. Verma
    • 2
  • Dinesh Jasrotia
    • 2
    Email author
  1. 1.School of Physics and Materials ScienceShoolini UniversitySolanIndia
  2. 2.Department of PhysicsGovernment G.M. Science CollegeJammuIndia

Personalised recommendations