Ion implantation effects of negative oxygen on copper nanowires

  • Pallavi RanaEmail author
  • Chetna NarulaEmail author
  • Anita Rani
  • R. P. Chauhan
  • Rashi Gupta
  • Rajesh Kumar


Copper nanowires of diameter 80 nm were synthesized in polycarbonate membrane using template technique. Samples were then implanted with 160 keV O−1 ion beam with varying particle fluence of 1 × 1012, 5 × 1012 and 1 × 1013 ions/cm2. The SRIM (Stopping and range of ions in matter) software was used to study the processes involved. Compositional analysis confirms implantation of oxygen ions and the stoichiometry of Cu:O was found to be 6:1 by weight % when implanted at 1 × 1013 ions/cm2. Scanning electron microscopy reveals no changes in morphology of nanowires on implantation. X-ray diffraction analysis showed no shifting in the ‘2θ’ position of diffraction peaks however some new diffraction peaks of oxygen were seen. Implantation with oxygen ion led to the increased crystallite size and reduced strain. The conductivity of the nanowires was found to increase linearly with the ion fluence presenting constructive effect of negative ion implantation on copper nanowires.


Energy Dispersive Spectrum Cadmium Selenide Metallic Nanowires Copper Nanowires Nuclear Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (Anita Rani) is thankful to UGC, New Delhi, for providing financial support in terms of project. The authors wish to acknowledge the Director, IUAC, New Delhi, for providing Low Energy Ion Beam Facility. Authors also acknowledge NIT Kurukshetra, India for SEM and XRD facilities and SAI Lab, Thapar University, Patiala, India for providing EDS facility.


  1. 1.
    J. Weber, R. Singhal, S. Zekri, A. Kumar, Int. Mater. Rev. (2013)Google Scholar
  2. 2.
    L. Hu, G. Chen, Nano Lett. 7, 11 (2007)CrossRefGoogle Scholar
  3. 3.
    E.C. Walter, M.P. Zach, F. Favier, B. J. Murray, K. Inazu, J.C. Hemminger, R.M. Penner, Chem. Phys. Chem. 4, 2 (2003)Google Scholar
  4. 4.
    C. Yong, B.C. Zhang, C.S. Seet, A. See, L. Chan, J. Sudijono, S.L. Liew, C.H. Tung, H.C. Zeng, J. Phys. Chem. B 106, 48 (2002)CrossRefGoogle Scholar
  5. 5.
    H. Choi, S.H. Park, J. Am. Chem. Soc. 126, 20 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Kumar, V. Kumar, S.K. Sharma, S. K. Sharma, S.K. Chakarvarti, Superlattice. Microst. 48(1), 66–71 (2010)CrossRefGoogle Scholar
  7. 7.
    C.F. Monson, A.T. Woolley, Nano Lett. 3, 3 (2003)CrossRefGoogle Scholar
  8. 8.
    Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, Y. Qian, J. Phys. Chem. B 107, 46 (2003)Google Scholar
  9. 9.
    J.G. Zhao, Z. H. Hua, Y. Yao, Superlattice. Microst. 61 (2013)Google Scholar
  10. 10.
    I. Lisiecki, A. Filankembo, H.S.- Kongehl, K. Weiss, M.-P. Pileni, J. Urban, Phys. Rev. B 61, 7 (2000)CrossRefGoogle Scholar
  11. 11.
    Q. Li, C. Wang, Chem. Phys. Lett. 375, 5 (2003)Google Scholar
  12. 12.
    X. Chen, H. Duan, Z. Zhou, J. Liang, J. Gnanaraj, Nanotechnology 19, 36 (2008)Google Scholar
  13. 13.
    S. Kumar, D. Saini, G.S. Lotey, N. K. Verma Superlattice. Microst. 50(6) (2011) 698–702.CrossRefGoogle Scholar
  14. 14.
    J.W. Mayer, O. Marsh, lon Implantation in Semiconductors, Academic Press, New York, 1970Google Scholar
  15. 15.
    F.A. Smidt, Int. Mater. Rev. (2013)Google Scholar
  16. 16.
    P. Rana, R. P. Chauhan, J. Mater. Sci.-Mater. Electron 25, 12 (2014).CrossRefGoogle Scholar
  17. 17.
    J. Ishikawa, Surf. Coat. Tech. 65, 1–3 (1994)CrossRefGoogle Scholar
  18. 18.
    J. Ishikawa, H. Tsuji, M. Mimura, S. Ikemura, Y. Gotoh, Surf. Coat. Tech. 103 (1998)Google Scholar
  19. 19.
    J. Ishikawa, H. Tsuji, Y. Toyota, Y. Gotoh, K. Matsuda, M. Tanjyo, S. Sakai, Nucl. Instrum. Meth. B 96, 1 (1995)CrossRefGoogle Scholar
  20. 20.
    H. Tsuji, N. Arai, N. Gotoh, T. Minotani, T. Ishibashi, T. Okumine, K. Adachi, H. Kotaki, Y. Gotoh, J. Ishikawa, Surf. Coat. Tech. 201, 19 (2007)Google Scholar
  21. 21.
    H. Tsuji, N. Sakai, H. Sugahara, Y. Gotoh, J. Ishikawa, Nucl. Instrum. Meth. B 237, 1 (2005)CrossRefGoogle Scholar
  22. 22.
    C. Narula, R.P. Chauhan, J. Alloy Compd. 684, 261–270 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Narula, R. P Chauhan, J. Mater. Sci.-Mater. Electron 28, (2017)Google Scholar
  24. 24.
    A. Huczko Appl. Phys. A 70, 4 (2000)CrossRefGoogle Scholar
  25. 25.
    G. Cao, D. Liu, Adv. Colloid. Interface 136, 1 (2008)CrossRefGoogle Scholar
  26. 26.
    J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter, In Treatise on Heavy-Ion Science, pp. 93–129. Springer Newyork (1985)Google Scholar
  27. 27.
    J.F. Ziegler, J.P. Biersack, U. Littmark (2008). SRIM 2008.04:
  28. 28.
    N. Kishimoto, V.T. Gritsyna, Y. Takeda, C.G. Lee, T. Saito, Nucl. Instrum. Meth. B 141, 1 (1998)CrossRefGoogle Scholar
  29. 29.
    G.K. Williamson, W. H. Hall, Acta. Metall. Mater. 1, 1 (1953)CrossRefGoogle Scholar
  30. 30.
    A.A. Nazarov, A. E. Romanov, R. Z. Valiev, Nanostruct. Mater. 4, 1 (1994)CrossRefGoogle Scholar
  31. 31.
    W. Qin, J.A. Szpunar, Phil. Mag. Lett. 85, 12 (2005)CrossRefGoogle Scholar
  32. 32.
    N. Kumar, R. Kumar, S. Kumar, S. K. Chakarvarti, J. Mater. Sci. Mater. Electron 25, 8 (2014)Google Scholar
  33. 33.
    P.D. Kanungo, R. Kogler, K.N. Duc, N. Zakharov, P. Werner, U. Gosele, Nanotechnology 20, 16 (2009)CrossRefGoogle Scholar
  34. 34.
    R.P. Chauhan, P. Rana, J. Radioanal. Nucl. Chem. 302, 2 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Ishikawa, H. Tsuji, Y. Gotoh, Surf. Coat. Tech. 203, 17 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyKurukshetraIndia
  2. 2.Department of Physics, University CollegeKurukshetra UniversityKurukshetraIndia
  3. 3.University School of Basic and Applied SciencesGGSIP UniversityNew DelhiIndia

Personalised recommendations