Skip to main content
Log in

Ion implantation effects of negative oxygen on copper nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper nanowires of diameter 80 nm were synthesized in polycarbonate membrane using template technique. Samples were then implanted with 160 keV O−1 ion beam with varying particle fluence of 1 × 1012, 5 × 1012 and 1 × 1013 ions/cm2. The SRIM (Stopping and range of ions in matter) software was used to study the processes involved. Compositional analysis confirms implantation of oxygen ions and the stoichiometry of Cu:O was found to be 6:1 by weight % when implanted at 1 × 1013 ions/cm2. Scanning electron microscopy reveals no changes in morphology of nanowires on implantation. X-ray diffraction analysis showed no shifting in the ‘2θ’ position of diffraction peaks however some new diffraction peaks of oxygen were seen. Implantation with oxygen ion led to the increased crystallite size and reduced strain. The conductivity of the nanowires was found to increase linearly with the ion fluence presenting constructive effect of negative ion implantation on copper nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Weber, R. Singhal, S. Zekri, A. Kumar, Int. Mater. Rev. (2013)

  2. L. Hu, G. Chen, Nano Lett. 7, 11 (2007)

    Article  Google Scholar 

  3. E.C. Walter, M.P. Zach, F. Favier, B. J. Murray, K. Inazu, J.C. Hemminger, R.M. Penner, Chem. Phys. Chem. 4, 2 (2003)

    Google Scholar 

  4. C. Yong, B.C. Zhang, C.S. Seet, A. See, L. Chan, J. Sudijono, S.L. Liew, C.H. Tung, H.C. Zeng, J. Phys. Chem. B 106, 48 (2002)

    Article  Google Scholar 

  5. H. Choi, S.H. Park, J. Am. Chem. Soc. 126, 20 (2004)

    Article  Google Scholar 

  6. S. Kumar, V. Kumar, S.K. Sharma, S. K. Sharma, S.K. Chakarvarti, Superlattice. Microst. 48(1), 66–71 (2010)

    Article  Google Scholar 

  7. C.F. Monson, A.T. Woolley, Nano Lett. 3, 3 (2003)

    Article  Google Scholar 

  8. Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, Y. Qian, J. Phys. Chem. B 107, 46 (2003)

    Google Scholar 

  9. J.G. Zhao, Z. H. Hua, Y. Yao, Superlattice. Microst. 61 (2013)

  10. I. Lisiecki, A. Filankembo, H.S.- Kongehl, K. Weiss, M.-P. Pileni, J. Urban, Phys. Rev. B 61, 7 (2000)

    Article  Google Scholar 

  11. Q. Li, C. Wang, Chem. Phys. Lett. 375, 5 (2003)

    Google Scholar 

  12. X. Chen, H. Duan, Z. Zhou, J. Liang, J. Gnanaraj, Nanotechnology 19, 36 (2008)

    Google Scholar 

  13. S. Kumar, D. Saini, G.S. Lotey, N. K. Verma Superlattice. Microst. 50(6) (2011) 698–702.

    Article  Google Scholar 

  14. J.W. Mayer, O. Marsh, lon Implantation in Semiconductors, Academic Press, New York, 1970

    Google Scholar 

  15. F.A. Smidt, Int. Mater. Rev. (2013)

  16. P. Rana, R. P. Chauhan, J. Mater. Sci.-Mater. Electron 25, 12 (2014).

    Article  Google Scholar 

  17. J. Ishikawa, Surf. Coat. Tech. 65, 1–3 (1994)

    Article  Google Scholar 

  18. J. Ishikawa, H. Tsuji, M. Mimura, S. Ikemura, Y. Gotoh, Surf. Coat. Tech. 103 (1998)

  19. J. Ishikawa, H. Tsuji, Y. Toyota, Y. Gotoh, K. Matsuda, M. Tanjyo, S. Sakai, Nucl. Instrum. Meth. B 96, 1 (1995)

    Article  Google Scholar 

  20. H. Tsuji, N. Arai, N. Gotoh, T. Minotani, T. Ishibashi, T. Okumine, K. Adachi, H. Kotaki, Y. Gotoh, J. Ishikawa, Surf. Coat. Tech. 201, 19 (2007)

    Google Scholar 

  21. H. Tsuji, N. Sakai, H. Sugahara, Y. Gotoh, J. Ishikawa, Nucl. Instrum. Meth. B 237, 1 (2005)

    Article  Google Scholar 

  22. C. Narula, R.P. Chauhan, J. Alloy Compd. 684, 261–270 (2016)

    Article  Google Scholar 

  23. C. Narula, R. P Chauhan, J. Mater. Sci.-Mater. Electron 28, (2017)

  24. A. Huczko Appl. Phys. A 70, 4 (2000)

    Article  Google Scholar 

  25. G. Cao, D. Liu, Adv. Colloid. Interface 136, 1 (2008)

    Article  Google Scholar 

  26. J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter, In Treatise on Heavy-Ion Science, pp. 93–129. Springer Newyork (1985)

  27. J.F. Ziegler, J.P. Biersack, U. Littmark (2008). SRIM 2008.04:http://www.SRIM.org.

  28. N. Kishimoto, V.T. Gritsyna, Y. Takeda, C.G. Lee, T. Saito, Nucl. Instrum. Meth. B 141, 1 (1998)

    Article  Google Scholar 

  29. G.K. Williamson, W. H. Hall, Acta. Metall. Mater. 1, 1 (1953)

    Article  Google Scholar 

  30. A.A. Nazarov, A. E. Romanov, R. Z. Valiev, Nanostruct. Mater. 4, 1 (1994)

    Article  Google Scholar 

  31. W. Qin, J.A. Szpunar, Phil. Mag. Lett. 85, 12 (2005)

    Article  Google Scholar 

  32. N. Kumar, R. Kumar, S. Kumar, S. K. Chakarvarti, J. Mater. Sci. Mater. Electron 25, 8 (2014)

    Google Scholar 

  33. P.D. Kanungo, R. Kogler, K.N. Duc, N. Zakharov, P. Werner, U. Gosele, Nanotechnology 20, 16 (2009)

    Article  Google Scholar 

  34. R.P. Chauhan, P. Rana, J. Radioanal. Nucl. Chem. 302, 2 (2014)

    Article  Google Scholar 

  35. J. Ishikawa, H. Tsuji, Y. Gotoh, Surf. Coat. Tech. 203, 17 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Anita Rani) is thankful to UGC, New Delhi, for providing financial support in terms of project. The authors wish to acknowledge the Director, IUAC, New Delhi, for providing Low Energy Ion Beam Facility. Authors also acknowledge NIT Kurukshetra, India for SEM and XRD facilities and SAI Lab, Thapar University, Patiala, India for providing EDS facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pallavi Rana or Chetna Narula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P., Narula, C., Rani, A. et al. Ion implantation effects of negative oxygen on copper nanowires. J Mater Sci: Mater Electron 28, 9998–10006 (2017). https://doi.org/10.1007/s10854-017-6757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6757-1

Keywords

Navigation