Role of pH on electrical, optical and photocatalytic properties of ZnO based nanoparticles



Nowadays, tremendous increase in environmental issue is an alarming threat to the ecosystem. Influence of pH is the major concern for the application of ZnO nanoparticles. These nanoparticles with different tuning defects were prepared by simple combustion method using Zn nitrate as precursor and glucose as fuel and oxidizer. This paper reports the effect of four different pH values 5, 7, 9 and 11 to synthesize ZnO nanoparticles namely PZ1-PZ4. Prepared samples were characterized by several techniques including XRD, FESEM, FTIR, UV Vis, PL, LCR and Raman spectroscopy. These detailed characterization study confirmed that the prepared ZnO nanoparticles are possessing well crystalline and hexagonal wurtzite structure. Interestingly, it was observed that influence of pH greatly effects on morphological and electrical properties. The average grain size is in the range of 40–80nm. Raman spectroscopy exhibited a sharp and strong mode near 487 cm−1 which further confirmed the well crystalline and hexagonal wurtzite structure. Furthermore, ZnO as photocatalyst exhibited photocatalytic degradation towards direct red (DR-31) dye. From the photocatalytic experiment it was observed that degradation percentage increases with increasing pH value up to 9 and thereafter percentage degradation was decreased. Thus an ideal pH value of prepared nanoparticles is pH-9 exhibiting almost completes degradation only in 75 min under UV irradiation. Kinetic studied revealed that all the samples follows first order rate constant and for pH-9 rate constant is 0.04075 min−1.



Authors are grateful to U.G.C, New Delhi for providing financial assistance for carrying out project (F.No. 42–770/2013). Thanks due to the IKGPTU Kapurthala, Director, R.S.I.C, Panjab University Chandigarh, for providing SEM and XRD facility.


  1. 1.
    Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X.J. Zhang, Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles, Chemosphere 144, 1530–1535 (2016). doi: 10.1016/j.chemosphere.2015.10.040 CrossRefGoogle Scholar
  2. 2.
    M. Hussain, H. Sun, S. Karim, A. Nisar, M. Khan, H. Munawar, I. Mashkoor, Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide. J. Nanoparticle Res. (2016). doi: 10.1007/s11051-016-3397-y.Google Scholar
  3. 3.
    S. Bhatia, N. Verma, R.K. Bedi, Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red – 31 dye. Opt. Mater. (Amst). 62, 392–398 (2016). doi: 10.1016/j.optmat.2016.10.013.CrossRefGoogle Scholar
  4. 4.
    S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films. 516, 4613–4619 (2008). doi: 10.1016/j.tsf.2007.05.090 CrossRefGoogle Scholar
  5. 5.
    T. Zhang, R. Liang, L. Dong, J. Wang, J. Xu, C. Pan, Wavelength tunable infrared light emitting diode based on ordered ZnO nanowire / Si 1−x Ge x alloy heterojunction. Nano Res. (2015). doi: 10.1007/s12274-015-0774-2.Google Scholar
  6. 6.
    A.S. Kazemi, R. Afzalzadeh, M. Abadyan, ZnO nanoparticles as ethanol gas sensors and the effective parameters on their performance. J. Mater. Sci. Technol. 29, 393–400 (2013). doi: 10.1016/j.jmst.2013.03.009.CrossRefGoogle Scholar
  7. 7.
    M.I.N. Zhang, J. Yang, S. Dai, P. He, Z. Zhang, Effect of Au deposition on photocatalytic activity of ZnO nanoparticles for co oxidation. Surf. Rev. Lett. 12, 749–752 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Bhatia, R.K. Bedi, Morphological, electrical and optical properties of zinc oxide films grown on different substrates by spray pyrolysis technique. Nanostruct. Thin Film III 7766, 776610-776610 (2010). doi: 10.1117/12.863878.CrossRefGoogle Scholar
  9. 9.
    R. Bel-hadj-tahar, A.B. Mohamed, Sol-gel processed indium-doped zinc oxide thin films and their electrical and optical properties, New J. Glas. Ceram. 4, 55–65 (2014). doi: 10.4236/njgc.2014.44008.CrossRefGoogle Scholar
  10. 10.
    H. Bahadur, A.K. Srivastava, R.K. Sharma, S. Chandra, Morphologies of sol-gel derived thin films of zno using different precursor materials and their nanostructures. Nanoscale Res. Lett. 2, 469–475 (2007). doi: 10.1007/s11671-007-9089-x CrossRefGoogle Scholar
  11. 11.
    K. Sivakumar, V.S. Kumar, N. Muthukumarasamy, M. Thambidurai, T.S. Senthil, Influence of pH on ZnO nanocrystalline thin films prepared by sol–gel. Bull. Mater. Sci. 35, 327–331 (2012)CrossRefGoogle Scholar
  12. 12.
    A. El Manouni, F.J. Manjon, M. Perales, M. Mollar, B. Mari Soucase, M.C. Lopez, J.R. Ramos Barrado, Effect of thermal annealing on ZnO:Al thin films grown by spray pyrolysis. Superlattices Microstruct. 42, 134–139 (2007). doi: 10.1016/j.spmi.2007.04.005.CrossRefGoogle Scholar
  13. 13.
    N. Srinatha, Y.S. No, V.B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A.M. Umarji, W.K. Choi, Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin films. RSC Adv. 6, 9779–9788 (2016). Doi: 10.1039/C5RA22795J.CrossRefGoogle Scholar
  14. 14.
    S. Rajendiran, A.K. Rossall, A. Gibson, E. Wagenaars, Modelling of laser ablation and reactive oxygen plasmas for pulsed laser deposition of zinc oxide. Surf. Coatings Technol. 260, 417–423 (2014). Doi: 10.1016/j.surfcoat.2014.06.062.CrossRefGoogle Scholar
  15. 15.
    J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, Control of ZnO morphology via a simple solution route control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172–4177 (2002). Doi: 10.1021/cm020077h.CrossRefGoogle Scholar
  16. 16.
    Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Effect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol-gel method, Appl. Surf. Sci. 256 4543–4547 (2010). Doi: 10.1016/j.apsusc.2010.02.044 CrossRefGoogle Scholar
  17. 17.
    G.A. Kumar, M.V.R. Reddy, K.N. Reddy, Effect of annealing on ZnO thin films grown on quartz substrate by RF magnetron sputtering. J. Phys. Conf. Ser. 365, 12031 (2012). doi: 10.1088/1742-6596/365/1/012031 CrossRefGoogle Scholar
  18. 18.
    J. Morales, J. Solis, W.L. Estrada, Doping effects on the response of thin film ZnO gas sensor to ethanol vapour. Superf. Y Vacio. 9, 245–247 (1999).Google Scholar
  19. 19.
    I. Kazeminezhad, A. Sadollahkhani, Influence of pH on the photocatalytic activity of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. (2016). doi: 10.1007/s10854-016-4284-0.Google Scholar
  20. 20.
    R. Ikono, P.R. Akwalia, W.B. Siswanto Wahyu, A. Sukarto, N.T. Rochman, Effect of PH variation on particle size and purity of nano zinc oxide synthesized by Sol-Gel method, (2012) 10–14.Google Scholar
  21. 21.
    H. Sutanto, S. Wibowo, I. Nurhasanah, E. Hidayanto, H. Hadiyanto, Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. Int. J. Chem. Eng. 2016, 6 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Pradhan, J.C. Alonso, M. Bizarro, Photocatalytic performance of ZnO: Al films under different light sources. Int. J. Photoenergy 2012 (2012). doi: 10.1155/2012/780462
  23. 23.
    R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang, S.H. Kim, Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram. Int. 41, 7773–7782 (2015). Doi: 10.1016/j.ceramint.2015.02.110.CrossRefGoogle Scholar
  24. 24.
    S.B. Rana, A. Singh, S. Singh, Characterization and optical studies of pure and Sb doped ZnO nanoparticles. Int. J. Nanoelectron. Mater. 6, 45–57 (2013).Google Scholar
  25. 25.
    S. Bhatia, N. Verma, R.K. Bedi, Effect of aging time on Gas sensing properties and photocatalytic efficiency of dye on In-Sn co-doped ZnO nanoparticles. Mater. Res. Bull (2016). Doi: 10.1016/j.materresbull.2016.12.011 Google Scholar
  26. 26.
    M.J. Chithra, M.S.K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. (2015). Doi: 10.1007/s40195-015-0218-8.Google Scholar
  27. 27.
    K.L. Foo, M. Kashif, U. Hashim, M.E. Ali, Fabrication and characterization of ZnO thin films by sol-gel spin coating method for the determination of phosphate buffer saline concentration. Curr. Nanosci. 9, 288–292 (2013). Doi: 10.2174/1573413711309020020.CrossRefGoogle Scholar
  28. 28.
    T.A.J.M. Khan, T. Bibi, B. Hussain, Synthesis and optical study of heat-treated ZnO nanopowder for optoelectronic applications. Bull. Mater. Sci. 38, 1851–1858 (2015).CrossRefGoogle Scholar
  29. 29.
    C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys Compd. 623, 248–254 (2015). doi: 10.1016/j.jallcom.2014.10.067 CrossRefGoogle Scholar
  30. 30.
    D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, C.D. Lokhande, Room temperature liquefied petroleum gas (LPG) sensor. Sens. Actuat. B Chem. 147, 488–494 (2010). doi: 10.1016/j.snb.2010.02.063 CrossRefGoogle Scholar
  31. 31.
    C. Jayachandraiah, G. Krishnaiah, Erbium induced raman studies and dielectric properties of Er-doped ZnO nanoparticles, Adv. Mater. Lett. Adv. Mater. Lett. 6, 743–748 (2015). doi: 10.5185/amlett.2015.5801 CrossRefGoogle Scholar
  32. 32.
    S. Bhatia, N. Verma, A. Mahajan, R.K. Bedi, Characterization of ZnO films based sensors prepared by different techniques, Appl. Mech. Mater. 772 (2015) 50–54. doi: 10.4028/
  33. 33.
    N. Sobana, K. Thirumalai, Kinetics of solar light assisted degradation of direct red 23 on activated carbon-loaded zinc oxide and influence of operational parameters, Can. Chem. Trans. 4, 77–89 (2016). doi: 10.13179/canchemtrans.2016.04.01.0258.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsKanya Maha VidyalayaJalandharIndia
  2. 2.Satyam Institute of Engineering and TechnologyAmritsarIndia

Personalised recommendations