Skip to main content
Log in

Role of pH on electrical, optical and photocatalytic properties of ZnO based nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Author Correction to this article was published on 15 February 2018

This article has been updated

Abstract

Nowadays, tremendous increase in environmental issue is an alarming threat to the ecosystem. Influence of pH is the major concern for the application of ZnO nanoparticles. These nanoparticles with different tuning defects were prepared by simple combustion method using Zn nitrate as precursor and glucose as fuel and oxidizer. This paper reports the effect of four different pH values 5, 7, 9 and 11 to synthesize ZnO nanoparticles namely PZ1-PZ4. Prepared samples were characterized by several techniques including XRD, FESEM, FTIR, UV Vis, PL, LCR and Raman spectroscopy. These detailed characterization study confirmed that the prepared ZnO nanoparticles are possessing well crystalline and hexagonal wurtzite structure. Interestingly, it was observed that influence of pH greatly effects on morphological and electrical properties. The average grain size is in the range of 40–80nm. Raman spectroscopy exhibited a sharp and strong mode near 487 cm−1 which further confirmed the well crystalline and hexagonal wurtzite structure. Furthermore, ZnO as photocatalyst exhibited photocatalytic degradation towards direct red (DR-31) dye. From the photocatalytic experiment it was observed that degradation percentage increases with increasing pH value up to 9 and thereafter percentage degradation was decreased. Thus an ideal pH value of prepared nanoparticles is pH-9 exhibiting almost completes degradation only in 75 min under UV irradiation. Kinetic studied revealed that all the samples follows first order rate constant and for pH-9 rate constant is 0.04075 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 15 February 2018

    The original version of this article unfortunately contained an error in affiliation of the authors. The updated affiliation has been corrected with this erratum.

References

  1. Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X.J. Zhang, Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles, Chemosphere 144, 1530–1535 (2016). doi:10.1016/j.chemosphere.2015.10.040

    Article  Google Scholar 

  2. M. Hussain, H. Sun, S. Karim, A. Nisar, M. Khan, H. Munawar, I. Mashkoor, Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide. J. Nanoparticle Res. (2016). doi:10.1007/s11051-016-3397-y.

    Google Scholar 

  3. S. Bhatia, N. Verma, R.K. Bedi, Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red – 31 dye. Opt. Mater. (Amst). 62, 392–398 (2016). doi:10.1016/j.optmat.2016.10.013.

    Article  Google Scholar 

  4. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films. 516, 4613–4619 (2008). doi:10.1016/j.tsf.2007.05.090

    Article  Google Scholar 

  5. T. Zhang, R. Liang, L. Dong, J. Wang, J. Xu, C. Pan, Wavelength tunable infrared light emitting diode based on ordered ZnO nanowire / Si 1−x Ge x alloy heterojunction. Nano Res. (2015). doi:10.1007/s12274-015-0774-2.

    Google Scholar 

  6. A.S. Kazemi, R. Afzalzadeh, M. Abadyan, ZnO nanoparticles as ethanol gas sensors and the effective parameters on their performance. J. Mater. Sci. Technol. 29, 393–400 (2013). doi:10.1016/j.jmst.2013.03.009.

    Article  Google Scholar 

  7. M.I.N. Zhang, J. Yang, S. Dai, P. He, Z. Zhang, Effect of Au deposition on photocatalytic activity of ZnO nanoparticles for co oxidation. Surf. Rev. Lett. 12, 749–752 (2005)

    Article  Google Scholar 

  8. S. Bhatia, R.K. Bedi, Morphological, electrical and optical properties of zinc oxide films grown on different substrates by spray pyrolysis technique. Nanostruct. Thin Film III 7766, 776610-776610 (2010). doi:10.1117/12.863878.

    Article  Google Scholar 

  9. R. Bel-hadj-tahar, A.B. Mohamed, Sol-gel processed indium-doped zinc oxide thin films and their electrical and optical properties, New J. Glas. Ceram. 4, 55–65 (2014). doi:10.4236/njgc.2014.44008.

    Article  Google Scholar 

  10. H. Bahadur, A.K. Srivastava, R.K. Sharma, S. Chandra, Morphologies of sol-gel derived thin films of zno using different precursor materials and their nanostructures. Nanoscale Res. Lett. 2, 469–475 (2007). doi:10.1007/s11671-007-9089-x

    Article  Google Scholar 

  11. K. Sivakumar, V.S. Kumar, N. Muthukumarasamy, M. Thambidurai, T.S. Senthil, Influence of pH on ZnO nanocrystalline thin films prepared by sol–gel. Bull. Mater. Sci. 35, 327–331 (2012)

    Article  Google Scholar 

  12. A. El Manouni, F.J. Manjon, M. Perales, M. Mollar, B. Mari Soucase, M.C. Lopez, J.R. Ramos Barrado, Effect of thermal annealing on ZnO:Al thin films grown by spray pyrolysis. Superlattices Microstruct. 42, 134–139 (2007). doi:10.1016/j.spmi.2007.04.005.

    Article  Google Scholar 

  13. N. Srinatha, Y.S. No, V.B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A.M. Umarji, W.K. Choi, Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin films. RSC Adv. 6, 9779–9788 (2016). Doi:10.1039/C5RA22795J.

    Article  Google Scholar 

  14. S. Rajendiran, A.K. Rossall, A. Gibson, E. Wagenaars, Modelling of laser ablation and reactive oxygen plasmas for pulsed laser deposition of zinc oxide. Surf. Coatings Technol. 260, 417–423 (2014). Doi:10.1016/j.surfcoat.2014.06.062.

    Article  Google Scholar 

  15. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, Control of ZnO morphology via a simple solution route control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172–4177 (2002). Doi:10.1021/cm020077h.

    Article  Google Scholar 

  16. Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Effect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol-gel method, Appl. Surf. Sci. 256 4543–4547 (2010). Doi:10.1016/j.apsusc.2010.02.044

    Article  Google Scholar 

  17. G.A. Kumar, M.V.R. Reddy, K.N. Reddy, Effect of annealing on ZnO thin films grown on quartz substrate by RF magnetron sputtering. J. Phys. Conf. Ser. 365, 12031 (2012). doi:10.1088/1742-6596/365/1/012031

    Article  Google Scholar 

  18. J. Morales, J. Solis, W.L. Estrada, Doping effects on the response of thin film ZnO gas sensor to ethanol vapour. Superf. Y Vacio. 9, 245–247 (1999).

    Google Scholar 

  19. I. Kazeminezhad, A. Sadollahkhani, Influence of pH on the photocatalytic activity of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4284-0.

    Google Scholar 

  20. R. Ikono, P.R. Akwalia, W.B. Siswanto Wahyu, A. Sukarto, N.T. Rochman, Effect of PH variation on particle size and purity of nano zinc oxide synthesized by Sol-Gel method, (2012) 10–14.

  21. H. Sutanto, S. Wibowo, I. Nurhasanah, E. Hidayanto, H. Hadiyanto, Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. Int. J. Chem. Eng. 2016, 6 (2016)

    Article  Google Scholar 

  22. P. Pradhan, J.C. Alonso, M. Bizarro, Photocatalytic performance of ZnO: Al films under different light sources. Int. J. Photoenergy 2012 (2012). doi:10.1155/2012/780462

  23. R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang, S.H. Kim, Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram. Int. 41, 7773–7782 (2015). Doi:10.1016/j.ceramint.2015.02.110.

    Article  Google Scholar 

  24. S.B. Rana, A. Singh, S. Singh, Characterization and optical studies of pure and Sb doped ZnO nanoparticles. Int. J. Nanoelectron. Mater. 6, 45–57 (2013).

    Google Scholar 

  25. S. Bhatia, N. Verma, R.K. Bedi, Effect of aging time on Gas sensing properties and photocatalytic efficiency of dye on In-Sn co-doped ZnO nanoparticles. Mater. Res. Bull (2016). Doi:10.1016/j.materresbull.2016.12.011

    Google Scholar 

  26. M.J. Chithra, M.S.K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. (2015). Doi:10.1007/s40195-015-0218-8.

    Google Scholar 

  27. K.L. Foo, M. Kashif, U. Hashim, M.E. Ali, Fabrication and characterization of ZnO thin films by sol-gel spin coating method for the determination of phosphate buffer saline concentration. Curr. Nanosci. 9, 288–292 (2013). Doi:10.2174/1573413711309020020.

    Article  Google Scholar 

  28. T.A.J.M. Khan, T. Bibi, B. Hussain, Synthesis and optical study of heat-treated ZnO nanopowder for optoelectronic applications. Bull. Mater. Sci. 38, 1851–1858 (2015).

    Article  Google Scholar 

  29. C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys Compd. 623, 248–254 (2015). doi:10.1016/j.jallcom.2014.10.067

    Article  Google Scholar 

  30. D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, C.D. Lokhande, Room temperature liquefied petroleum gas (LPG) sensor. Sens. Actuat. B Chem. 147, 488–494 (2010). doi:10.1016/j.snb.2010.02.063

    Article  Google Scholar 

  31. C. Jayachandraiah, G. Krishnaiah, Erbium induced raman studies and dielectric properties of Er-doped ZnO nanoparticles, Adv. Mater. Lett. Adv. Mater. Lett. 6, 743–748 (2015). doi:10.5185/amlett.2015.5801

    Article  Google Scholar 

  32. S. Bhatia, N. Verma, A. Mahajan, R.K. Bedi, Characterization of ZnO films based sensors prepared by different techniques, Appl. Mech. Mater. 772 (2015) 50–54. doi:10.4028/www.scientific.net/AMM.772.50

  33. N. Sobana, K. Thirumalai, Kinetics of solar light assisted degradation of direct red 23 on activated carbon-loaded zinc oxide and influence of operational parameters, Can. Chem. Trans. 4, 77–89 (2016). doi:10.13179/canchemtrans.2016.04.01.0258.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to U.G.C, New Delhi for providing financial assistance for carrying out project (F.No. 42–770/2013). Thanks due to the IKGPTU Kapurthala, Director, R.S.I.C, Panjab University Chandigarh, for providing SEM and XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonik Bhatia.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10854-018-8759-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Bhatia, S. & Bedi, R.K. Role of pH on electrical, optical and photocatalytic properties of ZnO based nanoparticles. J Mater Sci: Mater Electron 28, 9788–9797 (2017). https://doi.org/10.1007/s10854-017-6732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6732-x

Navigation