Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods


In recent years materials based on nanocrystalline YFeO3 draw considerable research interest as the basis of innovative magnetic and magneto-optical devices. However, the size and the morphology of the nanocrystals are well-known to have a drastic influence on its functional properties. In present work, the effect of size and morphological features on magnetic properties of YFeO3 nanocrystals is investigated. Yttrium orthoferrite nanocrystals were synthesized via four soft-chemical routes—glycine-nitrate synthesis (GNS), thermal treatment of GNS products, hydrothermal and thermal treatments of co-precipitated hydroxides. Obtained samples were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and vibrational magnetometry (VM). It was shown that synthesized compositions correspond to single-phase nanocrystals of orthorhombic YFeO3 with different morphology (isometric, plate-like, rod-shaped) and average crystallite sizes ranging from 29 ± 3 to 58 ± 6 nm depending on synthesis route. Basic magnetic characteristics of its nanocrystals—residual magnetization (M res ) and coercivity (H coerc )—also show strong dependence on YFeO3 synthesis route, average crystallite size and its morphology and vary in the ranges 70–273 emu/mol and 1.8–21.0 kOe correspondingly. It was found that nanocrystals with isometric morphology obtained by different synthesis routes demonstrate simultaneous increase of residual magnetization and decrease of coercivity with growth of crystallite size. However, it was also found that as morphology becomes nonisometric (plate-like and rod-shaped) these trends are not observed anymore and magnetic behavior of YFeO3 is defined by interactions of weak-ferromagnetic and antiferromagnetic orderings in nanocrystals along its anisotropic directions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999). doi:10.1016/S0304-8853(99)00347-9.

    Article  Google Scholar 

  2. 2.

    Y.D. Tretyakov, Development of inorganic chemistry as a fundamental for the design of new generations of functional materials. Russ. Chem. Rev. 73, 831–846 (2004). doi:10.1070/RC2004v073n09ABEH000914

    Article  Google Scholar 

  3. 3.

    S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74, 489–520 (2005). doi:10.1070/RC2005v074n06ABEH000897

    Article  Google Scholar 

  4. 4.

    A.A. Rempel, Nanotechnologies. Properties and applications of nanostructured materials. Russ. Chem. Rev. 76, 435–461 (2007). doi:10.1070/RC2007v076n05ABEH003674

    Article  Google Scholar 

  5. 5.

    Q.A. Pankhurst, J. Connoly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, 167–181 (2003). doi:10.1088/0022-3727/36/13/201

    Article  Google Scholar 

  6. 6.

    P. Gonzalez-Melendi, R. Fernandez-Pacheco, M.J. Coronado, E. Corredor, P.S. Testillano, M.C. Risueno et al., Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot. 101, 187–195 (2008). doi:10.1093/aob/mcm283

    Article  Google Scholar 

  7. 7.

    M.E. McHenry, D.E. Laughlin, Nano-scale materials development for future magnetic applications. Acta Mater. 48, 223–238 (2000). doi:10.1016/S1359-6454(99)00296-7

    Article  Google Scholar 

  8. 8.

    R. Skomski, Nanomagnetics. J. Phys. Condens Matter. 15, 841–896. Url:

  9. 9.

    M. George, A. Mary, S.S. Nair, P.A. Joy, M.R. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006). doi:10.1016/j.jmmm.2005.08.029

    Article  Google Scholar 

  10. 10.

    T. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of nanoparticles. Nano. Lett. 7, 766–772 (2007). doi:10.1021/nl063039w

    Article  Google Scholar 

  11. 11.

    V.I. Popkov, O.V. Almjasheva, Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russ. J. Appl. Chem. 87, 167–171 (2014). doi:10.1134/S1070427214020074

    Article  Google Scholar 

  12. 12.

    E.A. Tugova, O.N. Karpov, Nanocrystalline perovskite-like oxides formation in Ln2O3 - Fe2O3 - H2O (Ln = La, Gd) systems. Nanosystems 5, 854–860. Url:

  13. 13.

    D.V. Tac, V.O. Mittova, I.Y. Mittova, Influence of lanthanum content and annealing temperature on the size and magnetic properties of sol–gel derived Y1−xLaxFeO3 nanocrystals. Inorg. Mater. 47, 590–595 (2011). doi:10.1134/S0020168511050086.

    Google Scholar 

  14. 14.

    S. Mathur, M. Veith, R. Rapalaviciute, H. Shen, G.F. Goya, WLM Filho et al., Molecule derived synthesis of nanocrystalline YFeO3 and investigations on its weak ferromagnetic behavior. Chem. Mater. 16, 1906–1913 (2004). doi:10.1021/cm0311729

    Article  Google Scholar 

  15. 15.

    V.I. Popkov, O.V. Almjasheva, Formation mechanism of YFeO3 nanoparticles under the hydrothermal conditions. Nanosystems 5, 703–708 (2014). Url:

  16. 16.

    C. Li, K.C.K. Soh, P. Wu, Formability of ABO3 perovskites. J. Alloys Compd. 372, 40–48 (2004). doi:10.1016/j.jallcom.2003.10.017

    Article  Google Scholar 

  17. 17.

    D.G. Georgiev, K.A. Krezhov, V.V. Nietz, Weak antiferromagnetism in YFeO3 and HoFeO3. Solid State Commun. 96, 535–537 (1995). doi:10.1016/0038-1098(95)00568-4

    Article  Google Scholar 

  18. 18.

    M. Shang, C. Zhang, T. Zhang, L. Yuan, L. Ge, H. Yuan et al., The multiferroic perovskite YFeO3. Appl. Phys. Lett. 102, 062903 (2013). doi:10.1063/1.4791697

    Article  Google Scholar 

  19. 19.

    Y. Chen, J. Yang, X. Wang, F. Feng, Y. Zhang, Y. Tang, Synthesis YFeO3 by salt-assisted solution combustion method and its photocatalytic activity. J. Ceram. Soc. Jpn. 122:146–150 (2014). doi:10.2109/jcersj2.122.146.

    Article  Google Scholar 

  20. 20.

    P. Tang, H. Sun, H. Chen, F. Cao, Hydrothermal processing-assisted synthesis of nanocrystalline YFeO3 and its visible-light photocatalytic activity. Curr. Nanosci. 8, 64–67 (2012). doi:10.2174/1573413711208010064

    Article  Google Scholar 

  21. 21.

    D. Hou, L. Feng, J. Zhang, S. Dong, D. Zhou, T.T. Lim, Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported and Er3+:YFeO3-doped TiO2 photocatalyst. J. Hazard. Mater. 199–200, 301–308 (2012). doi:10.1016/j.jhazmat.2011.11.011

    Article  Google Scholar 

  22. 22.

    Y.S. Didosyan, H. Hauser, J. Nicolics, F. Haberl, Application of orthoferrites for light spot position measurements. J. Appl. Phys. 87, 7079–7081 (2000). doi:10.1063/1.372937

    Article  Google Scholar 

  23. 23.

    Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. 583, 21–31 (2014). doi:10.1016/j.jallcom.2013.08.129

    Article  Google Scholar 

  24. 24.

    V.I. Popkov, O.V. Almjasheva, M.P. Schmidt, S.G. Izotova, V.V. Gusarov, Features of nanosized YFeO3 formation under heat treatment of glycine – nitrate combustion products. Russ J. Inorg. Chem. 60, 1193–1198 (2015). doi:10.1134/S0036023615100162

    Article  Google Scholar 

  25. 25.

    V.I. Popkov, O.V. Almjasheva, M.P. Schmidt, V.V. Gusarov, Formation mechanism of nanocrystalline Yttrium Orthoferrite under heat treatment of the coprecipitated hydroxides. Russ. J. Gen. Chem. 85, 1370–1375 (2015). doi:10.1134/S107036321506002X.

    Article  Google Scholar 

  26. 26.

    L. Alexander, H. Klug, Determination of crystallite size with the X-ray spectrometer. J. Appl. Phys. 21, 137–142 (1950). doi:10.1063/1.1699612

    Article  Google Scholar 

  27. 27.

    S. Geller, E.A. Wood, Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3. Acta Crystallogr. 9, 563–568 (1956). doi:10.1107/S0365110X56001571

    Article  Google Scholar 

  28. 28.

    D. Treves, Studies on orthoferrites at the Weizmann Institute of Science. J. Appl. Phys. 36, 1033 (1965). doi:10.1063/1.1714088

    Article  Google Scholar 

  29. 29.

    R.L. White, Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 40, 1061 (1969). doi:10.1063/1.1657530

    Article  Google Scholar 

  30. 30.

    I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958). doi:10.1016/0022-3697(58)90076-3

    Article  Google Scholar 

  31. 31.

    E. Lima, T.B. Martins, H.R. Rechenberg, G.F. Goya, C. Cavelius, R. Rapalaviciute et al., Numerical simulation of magnetic interactions in polycrystalline YFeO3. J. Magn. Magn. Mater. 320, 622–629 (2008). doi:10.1016/j.jmmm.2007.07.024

    Article  Google Scholar 

  32. 32.

    D. Schmool, N. Keller, M. Guyot, R. Krishnan, M. Tessier, Evidence of very high coercive fields in orthoferrite phases of PLD grown thin films. J. Magn. Magn. Mater. 195, 291–298 (1999). doi:10.1016/S0304-8853(99)00102-X

    Article  Google Scholar 

  33. 33.

    L.J. Downie, R.J. Goff, W. Kockelmann, S.D. Forder, J.E. Parker, F.D. Morrison et al., Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M = Y, Yb, In). J. Solid State Chem. 190, 52–60 (2012). doi:10.1016/j.jssc.2012.02.004

    Article  Google Scholar 

  34. 34.

    I.S. Jacobs, Field-induced spin reorientation in YFeO3 and YCrO3. J. Appl. Phys. 42, 1631 (1971). doi:10.1063/1.1660372

    Article  Google Scholar 

  35. 35.

    G.W. Durbin, C.E. Johnson, M.F. Thomas, Direct observation of field-induced spin reorientation in YFeO3 by the Mossbauer effect. J. Phys. C Solid State Phys. 8, 3051–3057 (1975). doi:10.1088/0022-3719/8/18/024

    Article  Google Scholar 

  36. 36.

    H. Lütgemeier, H.G. Bohn, M. Brajczewska, NMR observation of the spin structure and field induced spin reorientation in YFeO3. J. Magn. Magn. Mater. 21, 289–296 (1980). doi:10.1016/0304-8853(80)90475-8

    Article  Google Scholar 

  37. 37.

    W. Zhang, C. Fang, W. Yin, Y. Zeng, One-step synthesis of yttrium orthoferrite nanocrystals via sol-gel auto-combustion and their structural and magnetic characteristics, Mater. Chem. Phys. 137, 877–883 (2013). doi:10.1016/j.matchemphys.2012.10.029

    Google Scholar 

  38. 38.

    H. Shen, J. Xu, A. Wu, J. Zhao, M. Shi, Magnetic and thermal properties of perovskite YFeO3 single crystals. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 157, 77–80 (2009). doi:10.1016/j.mseb.2008.12.020.

    Article  Google Scholar 

Download references


This work was financially supported by the Russian Science Foundation (Project No. 16-13-10252). Structural characterization was made on the equipment of the Federal Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St.Petersburg, Russia).

Author information



Corresponding author

Correspondence to V. I. Popkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popkov, V.I., Almjasheva, O.V., Semenova, A.S. et al. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J Mater Sci: Mater Electron 28, 7163–7170 (2017).

Download citation


  • Average Crystallite Size
  • Residual Magnetization
  • Spin Reorientation
  • YFeO3
  • Antiferromagnetic Vector