Skip to main content

Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2−xLaxO4 nanoparticles

Abstract

In this work, we have studied the influence of La3+ substitution on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of cobalt ferrite nanoparticles synthesized by starch-assisted sol–gel combustion method. The powder X-ray diffraction analysis confirms the formation of single-phase CoFe2−xLaxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles. Raman spectroscopy study also reveals the formation of single phase spinel ferrite crystal structure. The morphological feature of synthesized ferrite nanoparticle was observed by scanning electron microscopy that demonstrate formation of spherical nanoparticles with grain size 10–50 nm. The presence of constituent’s, i.e., Co, Fe and La were authenticated by energy dispersive X-ray analysis. The magnetic parameters are measured by employing vibrating sample magnetometer. The saturation magnetization decreases with La3+ substitution, whereas coercivity shows anomalous behaviour. Cation redistribution in spinel ferrite nanoparticles are confirmed by X-ray photoelectron spectroscopy. The variation of dielectric constant (ϵ′, ϵʺ), loss tangent (tanδ), ac conductivity (σ), electric modulus (M′, Mʺ) and impedance (Z′, Zʺ) as a function of La3+ ion concentration and frequency has been investigated. The dielectric constant and ac conductivity increases with increase of La3+ substitution, whereas dielectric loss tangent exhibits anomalous behaviour. The modulus spectra reveal two semicircles associated with grain and grain boundary effects. The cole–cole plots in modulus formalism show that the electrical characteristics contribute from both the grains and grain boundaries. Modulus spectra suggest that the distribution of relaxation times and conduction mechanism are influenced by La3+ ion substitution in cobalt ferrite nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. V.J. Sawant, S.R. Bamane, R.V. Shejwal, S.B. Patil, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. J. Magn. Magn. Mater. 417, 222–229 (2016)

    Article  Google Scholar 

  2. J. Xie, C. Yan, Y. Yan, L. Chen, L. Song, Z. Fengchao, Y. An, G.J. Teng, N. Gu, Y. Zhang, Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale (2016). Doi:10.1039/C6NR03916B

    Google Scholar 

  3. W. Zhang, X. Zuo, C.D. Zhang, Wu and S Ravi P Silva, Cr3+ substituted spinel ferrite nanoparticles with high coercivity. Nanotechnology 27, 245707 (2016)

    Article  Google Scholar 

  4. A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)

    Article  Google Scholar 

  5. C. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. RamaChandra Reddy, M. Buchi Suresh, K.H. Rao, Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite. J. Magn. Magn. Mater. 340, 38–45 (2013)

    Article  Google Scholar 

  6. P. Samoila, C. Cojocaru, L. Sacarescu, P.P. Dorneanu, A.A. Domocos, A. Rotaru, Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl. Catal. B 202, 21–32 (2017)

    Article  Google Scholar 

  7. Y. Cao, H. Qin, X. Niu, D. Jia, Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies. Ceram. Int. 42 (2016) 10697–10703.

    Article  Google Scholar 

  8. J. Mao, X. Hou, F. Huang, K. Shen, K.H. Lam, Q Ru, S Hu, Zn substitution NiFe2O4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries. J. Alloys Compd. 676, 265–274 (2016)

    Article  Google Scholar 

  9. V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124–10137 (2016)

    Article  Google Scholar 

  10. G. Datt, M.S. Bishwas, R.M. M., A.C. Abhyankar, Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles. Nanoscale 8, 5200–5213 (2016)

    Article  Google Scholar 

  11. S. Jauhar, J. Kaur, A. Goyal, S. Singhal, Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6, 97694–97719 (2016)

    Article  Google Scholar 

  12. A Goyal, S. Kapoor, P. Samuel, V. Kumar, S. Singhal, Facile protocol for reduction of nitroarenes using magnetically recoverable CoM0.2Fe1.8O4 (M = Co, Ni, Cu and Zn) ferrite nanocatalysts. RSC Adv. 5, 51347–51363 (2015)

  13. V. Postica, J. Grottrup, R. Adelung, O. Lupan, A.K. Mishra, N.H. de Leeuw, N. Ababii, J.F.C. Carreira, J. Rodrigues, N.B. Sedrine, M.R. Correia, T. Monteiro, V. Sontea, Y.K. Mishra, Multifunctional materials: a case study of the effects of metal doping on ZnO tetrapods with bismuth and tin oxides. Adv. Funct. Mater. 27, 1604676 (2017)

    Article  Google Scholar 

  14. J. Gröttrup, I. Paulowicz, A. Schuchardt, V. Kaidas, S. Kaps, O. Lupan, R. Adelung, Y. K. Mishra, Three-dimensional flexible ceramics based on interconnected network of highly porous pure and metal alloyed ZnO tetrapods. Ceram. Int. 42, 8664–8676 (2016)

    Article  Google Scholar 

  15. M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwala, Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 17, 22923–22933 (2015)

    Article  Google Scholar 

  16. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact. 30, 775–783 (2013)

    Article  Google Scholar 

  17. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 578, 314–319 (2013)

    Article  Google Scholar 

  18. Z. Liua, Z. Penga, C. Lva, X. Fub, Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites, Ceram. Int. 43, 1449–1454 (2017)

    Article  Google Scholar 

  19. K.S. Lohar, A.M. Pachpinde, M.M. Langade, R.H. Kadam, E. Sagar, Shirsath, self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O4 nanoparticles. J. Alloys Compd. 604, 204–210 (2014)

    Article  Google Scholar 

  20. X Wu, W. Wang, N. Song, X. Yang, S. Khaimanov, N. Tsidaeva, From nanosphere to nanorod: tuning morphology, structure and performance of cobalt ferrites via Pr3+ doping. Chem. Eng. J. 306, 382–392 (2016)

    Article  Google Scholar 

  21. N. Sharma, P. Aghamkar, S. Kumar, M. Bansal, R.P. Anju, Tondon, Study of structural and magnetic properties of Nd doped zinc ferrites. J. Magn. Magn. Mater. 369, 162–167 (2014)

    Article  Google Scholar 

  22. H.Z. Duan, F.L. Zhou, X. Cheng, G.H. Chen, Q.L. Li, Preparation of hollow microspheres of Ce3+ doped NiCo ferrite with high microwave absorbing performance. J. Magn. Magn. Mater. 424, 467–471 (2017)

    Article  Google Scholar 

  23. P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, Magnetic properties of nanosized Gd doped Ni–Mn–Cr ferrites prepared using the sol–gel autocombustion technique. J. Magn. Magn. Mater. 378, 92–97 (2015)

    Article  Google Scholar 

  24. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys 110, 053910 (2011)

    Article  Google Scholar 

  25. R. Indhrajothi, I. Prakash, M. Venkateswarlu, N. Satyanarayana, Lanthanum ion (La3+) substituted CoFe2O4 anode material for lithium ion battery applications. New J. Chem. 39, 4601–4610 (2015)

    Article  Google Scholar 

  26. S.F. Mansour, O.M. Hemeda, S.I. El-Dek, B.I. Salem, Influence of La doping and synthesis method on the properties of CoFe2O4 nanocrystals. J. Magn. Magn. Mater. 420, 7–188 (2016)

    Article  Google Scholar 

  27. L. Kumar, M. Kar, Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2–xLaxO4). Ceram. Int. 38, 4771–4782 (2012)

    Article  Google Scholar 

  28. P. Kumar, S.K. Sharma, M. Knobel, M. Singh, Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique. J. Alloys Compd. 508, 115–118 (2010)

    Article  Google Scholar 

  29. K. Kamala Bharathi, R.J. Tackett, C.E. Botez, C.V. Ramana, Coexistence of spin glass behavior and long-range ferromagnetic ordering in La- and Dy-doped Co ferrite. J. Appl. Phys 109, 07A510 (2011)

    Article  Google Scholar 

  30. Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, D. Sekulic, V.N. Ivanovski, A. Recnik, B. Cekic, N.Z. Romcevic, Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113, 187221 (2013)

    Article  Google Scholar 

  31. P. Thakur, R. Sharma, M. Kumar, S. C. Katyal, N. S. Negi, N. Thakur, V. Sharma, P. Sharma, Superparamagnetic La doped Mn–Zn nano ferrites: dependence on dopant content and crystallite size. Mater. Res. Express 3, 075001 (2016)

    Article  Google Scholar 

  32. A. Sattar, A. M. Samy, R. S. El-Ezza, A. E. Eatah, Effect of rare earth substitution on magnetic and electrical properties of Mn–Zn ferrites. Phys. Status Solidi (a). 193(1), 86–93 (2002).

    Article  Google Scholar 

  33. A. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles, RSC Adv. 5 73714–73725 (2015)

    Article  Google Scholar 

  34. S.F. Mansour, O.M. Hemeda, S.I. El-Dek, B.I. Salem, Influence of La doping and synthesis method on the properties of CoFe2O4 nanocrystals. J. Magn. Magn. Mater. 420, 7–18 (2016)

    Article  Google Scholar 

  35. C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6, 7959–7970 (2014)

    Article  Google Scholar 

  36. V. Jagadeesha Angadi, B. Rudraswamy, K. Sadhana, S. Ramana Murthy, K. Praveena, Effect of Sm3+-Gd3+ on structural, electrical and magnetic properties of Mn-Zn ferrites synthesized via combustion route. J. Alloys Compd. 656, 5–12 (2016)

    Article  Google Scholar 

  37. S. G. Kakade, R. C. Kambale, C. V. Ramanna, Y. D. Kolekar, Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). RSC Adv. 6, 33308–33317 (2016)

    Article  Google Scholar 

  38. S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252–263 (2017)

    Article  Google Scholar 

  39. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: A Raman, Mössbauer, X-ray diffraction and electron spectroscopy study. Mater. Sci. Eng. B. 206, 69–78 (2016)

    Article  Google Scholar 

  40. A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M, Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloys Compd. 691, 343–354 (2017)

    Article  Google Scholar 

  41. G. Wang, Y Ma, Z. Wei, M Qi, Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem. Eng. J. 289, 150–160 (2016)

    Article  Google Scholar 

  42. Kalpana Panwar, Shailja Tiwari, Komal Bapna, N.L. Heda, R.J. Choudhary, D.M. Phase, B.L. Ahuja, The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films. J. Magn. Magn. Mater. 421, 25–30 (2017)

    Article  Google Scholar 

  43. S.K. Gore, R.S. Mane, M. Naushad, S.S. Jadhav, M.K. Zate, Z.A. Alothman, B.K. Hui, Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384–6390 (2015).

    Article  Google Scholar 

  44. H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv. 6, 6589–6597 (2016)

    Article  Google Scholar 

  45. Z.K. Karakas, R. Boncukcuoglu, I.H. Karakas, The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method. J. Magn. Magn. Mater. 374, 298–306 (2015)

    Article  Google Scholar 

  46. C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    Article  Google Scholar 

  47. R. C. Kambale, P. A. Shaikh, S. S. Kamble, Y. D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloy Comp. 478, 599–603 (2009)

    Article  Google Scholar 

  48. D. S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles, RSC Adv. 5, 2338 (2015)

    Article  Google Scholar 

  49. Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev 87(2), 290–294 (1952)

    Article  Google Scholar 

  50. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338–2345 (2015)

    Article  Google Scholar 

  51. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)

    Article  Google Scholar 

  52. M.U. Rana, M. Ul-Islam, I. Ahmad, T. Abbas, Determination of magnetic properties and Y—K angles in Cu—Zn—Fe—O system. J. Magn. Magn. Mater. 187, 242–246 (1998)

    Article  Google Scholar 

  53. M. Ajmal, A. Maqsood, Structural, electrical and magnetic properties of Cu1−xZnxFe2O4 ferrites (0 ≤ x ≤ 1). J. Alloys Compd. 460, 54–59 (2008)

    Article  Google Scholar 

  54. A. Chandran, K.C. George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods, J Nanopart Res 16, 2238 (2014)

    Article  Google Scholar 

  55. M.D. Rahaman, M.D. Mia, M.N.I. Khan, A.K.M. Akther Hossain, Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 404, 238–249 (2016)

    Article  Google Scholar 

  56. B.K. Bammannavar, L.R. Naik, Electrical properties and magnetoelectric effect in (x)Ni0.5Zn0.5Fe2O4 + (1–x)BPZT composites, Smart Mater. Struct. 18, 085013 (2009)

    Article  Google Scholar 

  57. M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, S. Atiq, Structural and impedance spectroscopic analysis of Sr/Mn modified BiFeO3 multiferroics, J Mater Sci 27, 11003–11011 (2016)

    Google Scholar 

  58. R. Ahmad, I.H. Gul, M. Zarrar, H. Anwar, M.B. Niazi, A. Khan, Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application. J. Magn. Magn. Mater. 405, 28–35 (2016)

    Article  Google Scholar 

  59. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Role of Cu2+ ions substitution in magnetic and conductivity behaviour of nano-CoFe2O4. Spectrochim. Acta Part A. 132, 256–262 (2014)

    Article  Google Scholar 

  60. N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels, RSC Adv. 5, 37925 (2015)

    Article  Google Scholar 

  61. M. Hashim, R.K. Alimuddin, S.E. Shirsath, R.K. Kotnala, S.S. Meena, S. Kumar, A. Roy, R.B. Jotania, P. Bhatt, R. Kumar, Influence of Ni2+ substitution on the structural, dielectric and magnetic properties of Cu–Cd ferrite nanoparticles. J. Alloys Compd. 573, 198–204 (2013)

    Article  Google Scholar 

  62. H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites, RSC Adv. 6, 6589–6597 (2016)

    Article  Google Scholar 

  63. M.J. Iqbal, R.A. Khan, S. Mizukami, T. Miyazaki, Mossbauer, magnetic and microwave absorption characteristics of substituted W-type hexaferrites nanoparticles. Ceram. Int. 38, 4097–4103 (2012)

    Article  Google Scholar 

  64. S.M. Patange, S.E. Shirsath, K.S. Lohar, S.S. Jadhav, N. Kulkarni, K.M. Jadhav, Electrical and switching properties of NiAlxFe2xO4 ferrites synthesized by chemical method. Phys. B. 406, 663–668 (2011)

    Article  Google Scholar 

  65. S. Verma, J. Chand, M. Singh, Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0.2Mn0.5Ni0.3AlyFe2yO4 ferrites synthesized by citrate precursor method. J. Alloy. Compd. 587, 763–770 (2014)

    Article  Google Scholar 

  66. M A Ahmed, S F Mansour, M A Abdo, Electrical properties of Cu substituted Co nano ferrite. Phys. Scr. 86, 025705 (2012)

    Article  Google Scholar 

  67. R. S. Yadav, J. Havlica, J. Masilko, J. Tkacz, I. Kuritka, J. Vilcakova, Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method, J Mater Sci 27, 5992–6002 (2016)

    Google Scholar 

  68. S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, T.K. Nath, Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals. J. Alloys Compd. 656, 887–896 (2016)

    Article  Google Scholar 

  69. Y. Pu, Z. Dong, P. Zhang, Y. Wu, J. Zhao, Y. Luo, Dielectric, complex impedance and electrical conductivity studies of the multiferroic Sr2FeSi2O7-crystallized glass-ceramics. J. Alloys Compd. 672, 64–71 (2016)

    Article  Google Scholar 

  70. A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method, J. Alloys Compd. 622, 687–694 (2015)

    Article  Google Scholar 

  71. M.M. Costa, G.F.M. Pires, Jr., A.J. Terezo, M.P.F. Grac¸, A.S.B. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J. Appl. Phys. 110, 034107 (2011)

    Article  Google Scholar 

  72. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, S.R. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys 115, 243904 (2014)

    Article  Google Scholar 

  73. N. Ortega, Ashok Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1–xO3/CoFe2O4 layered thin films. Phys. Rev. B 77, 014111 (2008)

    Article  Google Scholar 

  74. S. Nasri, A. Oueslati, I. Chaabane, M. Gargouri, AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound. Ceram. Int. 42, 14041–14048 (2016)

    Article  Google Scholar 

  75. M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Grac, A.S.B. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22(Co2Y) doped with Bi2O3. J. Appl. Phys 110, 034107 (2011)

    Article  Google Scholar 

  76. R.K. Panda, R. Muduli, S.K. Kar, D. Behera, Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy. J. Alloys Compd. 587, 481–486 (2014)

    Article  Google Scholar 

  77. R.N. Bhowmik, I.P. Muthuselvam, Dielectric properties of magnetic grains in CoFe1.95Ho0.05O4 spinel ferrite. J. Magn. Magn. Mater. 335, 64–74 (2013)

    Article  Google Scholar 

  78. S. Narayanan, A.K. Baral, V. Thangadurai, Dielectric characteristics of fast Li ion conducting garnet-type Li5+2xLa3Nb2–xYxO12 (x = 0. 25, 0.5 and 0.75)., Phys. Chem. Chem. Phys. DOI:10.1039/c6cp02287a

  79. K. Rasool, M.A. Rafiq, M. Ahmad, Z. Imran, M.M. Hasan, TiO2 nanoparticles and silicon nanowires hybrid device: Role of interface on electrical, dielectric, and photodetection properties. Appl. Phys. Lett. 101, 253104 (2012)

    Article  Google Scholar 

  80. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys 66(8), 3850–3856 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Singh Yadav.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.S., Kuřitka, I., Vilcakova, J. et al. Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2−xLaxO4 nanoparticles. J Mater Sci: Mater Electron 28, 9139–9154 (2017). https://doi.org/10.1007/s10854-017-6648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6648-5

Keywords

  • Ferrite
  • Octahedral Site
  • CoFe2O4
  • Cation Distribution
  • Raman Mode