Abstract
In this work, we have studied the influence of La3+ substitution on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of cobalt ferrite nanoparticles synthesized by starch-assisted sol–gel combustion method. The powder X-ray diffraction analysis confirms the formation of single-phase CoFe2−xLaxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles. Raman spectroscopy study also reveals the formation of single phase spinel ferrite crystal structure. The morphological feature of synthesized ferrite nanoparticle was observed by scanning electron microscopy that demonstrate formation of spherical nanoparticles with grain size 10–50 nm. The presence of constituent’s, i.e., Co, Fe and La were authenticated by energy dispersive X-ray analysis. The magnetic parameters are measured by employing vibrating sample magnetometer. The saturation magnetization decreases with La3+ substitution, whereas coercivity shows anomalous behaviour. Cation redistribution in spinel ferrite nanoparticles are confirmed by X-ray photoelectron spectroscopy. The variation of dielectric constant (ϵ′, ϵʺ), loss tangent (tanδ), ac conductivity (σ), electric modulus (M′, Mʺ) and impedance (Z′, Zʺ) as a function of La3+ ion concentration and frequency has been investigated. The dielectric constant and ac conductivity increases with increase of La3+ substitution, whereas dielectric loss tangent exhibits anomalous behaviour. The modulus spectra reveal two semicircles associated with grain and grain boundary effects. The cole–cole plots in modulus formalism show that the electrical characteristics contribute from both the grains and grain boundaries. Modulus spectra suggest that the distribution of relaxation times and conduction mechanism are influenced by La3+ ion substitution in cobalt ferrite nanoparticles.
This is a preview of subscription content, access via your institution.















References
V.J. Sawant, S.R. Bamane, R.V. Shejwal, S.B. Patil, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. J. Magn. Magn. Mater. 417, 222–229 (2016)
J. Xie, C. Yan, Y. Yan, L. Chen, L. Song, Z. Fengchao, Y. An, G.J. Teng, N. Gu, Y. Zhang, Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale (2016). Doi:10.1039/C6NR03916B
W. Zhang, X. Zuo, C.D. Zhang, Wu and S Ravi P Silva, Cr3+ substituted spinel ferrite nanoparticles with high coercivity. Nanotechnology 27, 245707 (2016)
A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)
C. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. RamaChandra Reddy, M. Buchi Suresh, K.H. Rao, Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite. J. Magn. Magn. Mater. 340, 38–45 (2013)
P. Samoila, C. Cojocaru, L. Sacarescu, P.P. Dorneanu, A.A. Domocos, A. Rotaru, Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl. Catal. B 202, 21–32 (2017)
Y. Cao, H. Qin, X. Niu, D. Jia, Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies. Ceram. Int. 42 (2016) 10697–10703.
J. Mao, X. Hou, F. Huang, K. Shen, K.H. Lam, Q Ru, S Hu, Zn substitution NiFe2O4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries. J. Alloys Compd. 676, 265–274 (2016)
V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124–10137 (2016)
G. Datt, M.S. Bishwas, R.M. M., A.C. Abhyankar, Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles. Nanoscale 8, 5200–5213 (2016)
S. Jauhar, J. Kaur, A. Goyal, S. Singhal, Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6, 97694–97719 (2016)
A Goyal, S. Kapoor, P. Samuel, V. Kumar, S. Singhal, Facile protocol for reduction of nitroarenes using magnetically recoverable CoM0.2Fe1.8O4 (M = Co, Ni, Cu and Zn) ferrite nanocatalysts. RSC Adv. 5, 51347–51363 (2015)
V. Postica, J. Grottrup, R. Adelung, O. Lupan, A.K. Mishra, N.H. de Leeuw, N. Ababii, J.F.C. Carreira, J. Rodrigues, N.B. Sedrine, M.R. Correia, T. Monteiro, V. Sontea, Y.K. Mishra, Multifunctional materials: a case study of the effects of metal doping on ZnO tetrapods with bismuth and tin oxides. Adv. Funct. Mater. 27, 1604676 (2017)
J. Gröttrup, I. Paulowicz, A. Schuchardt, V. Kaidas, S. Kaps, O. Lupan, R. Adelung, Y. K. Mishra, Three-dimensional flexible ceramics based on interconnected network of highly porous pure and metal alloyed ZnO tetrapods. Ceram. Int. 42, 8664–8676 (2016)
M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwala, Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 17, 22923–22933 (2015)
Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact. 30, 775–783 (2013)
B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 578, 314–319 (2013)
Z. Liua, Z. Penga, C. Lva, X. Fub, Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites, Ceram. Int. 43, 1449–1454 (2017)
K.S. Lohar, A.M. Pachpinde, M.M. Langade, R.H. Kadam, E. Sagar, Shirsath, self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O4 nanoparticles. J. Alloys Compd. 604, 204–210 (2014)
X Wu, W. Wang, N. Song, X. Yang, S. Khaimanov, N. Tsidaeva, From nanosphere to nanorod: tuning morphology, structure and performance of cobalt ferrites via Pr3+ doping. Chem. Eng. J. 306, 382–392 (2016)
N. Sharma, P. Aghamkar, S. Kumar, M. Bansal, R.P. Anju, Tondon, Study of structural and magnetic properties of Nd doped zinc ferrites. J. Magn. Magn. Mater. 369, 162–167 (2014)
H.Z. Duan, F.L. Zhou, X. Cheng, G.H. Chen, Q.L. Li, Preparation of hollow microspheres of Ce3+ doped NiCo ferrite with high microwave absorbing performance. J. Magn. Magn. Mater. 424, 467–471 (2017)
P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, Magnetic properties of nanosized Gd doped Ni–Mn–Cr ferrites prepared using the sol–gel autocombustion technique. J. Magn. Magn. Mater. 378, 92–97 (2015)
R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys 110, 053910 (2011)
R. Indhrajothi, I. Prakash, M. Venkateswarlu, N. Satyanarayana, Lanthanum ion (La3+) substituted CoFe2O4 anode material for lithium ion battery applications. New J. Chem. 39, 4601–4610 (2015)
S.F. Mansour, O.M. Hemeda, S.I. El-Dek, B.I. Salem, Influence of La doping and synthesis method on the properties of CoFe2O4 nanocrystals. J. Magn. Magn. Mater. 420, 7–188 (2016)
L. Kumar, M. Kar, Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2–xLaxO4). Ceram. Int. 38, 4771–4782 (2012)
P. Kumar, S.K. Sharma, M. Knobel, M. Singh, Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique. J. Alloys Compd. 508, 115–118 (2010)
K. Kamala Bharathi, R.J. Tackett, C.E. Botez, C.V. Ramana, Coexistence of spin glass behavior and long-range ferromagnetic ordering in La- and Dy-doped Co ferrite. J. Appl. Phys 109, 07A510 (2011)
Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, D. Sekulic, V.N. Ivanovski, A. Recnik, B. Cekic, N.Z. Romcevic, Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113, 187221 (2013)
P. Thakur, R. Sharma, M. Kumar, S. C. Katyal, N. S. Negi, N. Thakur, V. Sharma, P. Sharma, Superparamagnetic La doped Mn–Zn nano ferrites: dependence on dopant content and crystallite size. Mater. Res. Express 3, 075001 (2016)
A. Sattar, A. M. Samy, R. S. El-Ezza, A. E. Eatah, Effect of rare earth substitution on magnetic and electrical properties of Mn–Zn ferrites. Phys. Status Solidi (a). 193(1), 86–93 (2002).
A. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles, RSC Adv. 5 73714–73725 (2015)
S.F. Mansour, O.M. Hemeda, S.I. El-Dek, B.I. Salem, Influence of La doping and synthesis method on the properties of CoFe2O4 nanocrystals. J. Magn. Magn. Mater. 420, 7–18 (2016)
C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6, 7959–7970 (2014)
V. Jagadeesha Angadi, B. Rudraswamy, K. Sadhana, S. Ramana Murthy, K. Praveena, Effect of Sm3+-Gd3+ on structural, electrical and magnetic properties of Mn-Zn ferrites synthesized via combustion route. J. Alloys Compd. 656, 5–12 (2016)
S. G. Kakade, R. C. Kambale, C. V. Ramanna, Y. D. Kolekar, Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). RSC Adv. 6, 33308–33317 (2016)
S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252–263 (2017)
S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: A Raman, Mössbauer, X-ray diffraction and electron spectroscopy study. Mater. Sci. Eng. B. 206, 69–78 (2016)
A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M, Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloys Compd. 691, 343–354 (2017)
G. Wang, Y Ma, Z. Wei, M Qi, Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem. Eng. J. 289, 150–160 (2016)
Kalpana Panwar, Shailja Tiwari, Komal Bapna, N.L. Heda, R.J. Choudhary, D.M. Phase, B.L. Ahuja, The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films. J. Magn. Magn. Mater. 421, 25–30 (2017)
S.K. Gore, R.S. Mane, M. Naushad, S.S. Jadhav, M.K. Zate, Z.A. Alothman, B.K. Hui, Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384–6390 (2015).
H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv. 6, 6589–6597 (2016)
Z.K. Karakas, R. Boncukcuoglu, I.H. Karakas, The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method. J. Magn. Magn. Mater. 374, 298–306 (2015)
C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)
R. C. Kambale, P. A. Shaikh, S. S. Kamble, Y. D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloy Comp. 478, 599–603 (2009)
D. S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles, RSC Adv. 5, 2338 (2015)
Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev 87(2), 290–294 (1952)
D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338–2345 (2015)
R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)
M.U. Rana, M. Ul-Islam, I. Ahmad, T. Abbas, Determination of magnetic properties and Y—K angles in Cu—Zn—Fe—O system. J. Magn. Magn. Mater. 187, 242–246 (1998)
M. Ajmal, A. Maqsood, Structural, electrical and magnetic properties of Cu1−xZnxFe2O4 ferrites (0 ≤ x ≤ 1). J. Alloys Compd. 460, 54–59 (2008)
A. Chandran, K.C. George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods, J Nanopart Res 16, 2238 (2014)
M.D. Rahaman, M.D. Mia, M.N.I. Khan, A.K.M. Akther Hossain, Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 404, 238–249 (2016)
B.K. Bammannavar, L.R. Naik, Electrical properties and magnetoelectric effect in (x)Ni0.5Zn0.5Fe2O4 + (1–x)BPZT composites, Smart Mater. Struct. 18, 085013 (2009)
M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, S. Atiq, Structural and impedance spectroscopic analysis of Sr/Mn modified BiFeO3 multiferroics, J Mater Sci 27, 11003–11011 (2016)
R. Ahmad, I.H. Gul, M. Zarrar, H. Anwar, M.B. Niazi, A. Khan, Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application. J. Magn. Magn. Mater. 405, 28–35 (2016)
D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Role of Cu2+ ions substitution in magnetic and conductivity behaviour of nano-CoFe2O4. Spectrochim. Acta Part A. 132, 256–262 (2014)
N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels, RSC Adv. 5, 37925 (2015)
M. Hashim, R.K. Alimuddin, S.E. Shirsath, R.K. Kotnala, S.S. Meena, S. Kumar, A. Roy, R.B. Jotania, P. Bhatt, R. Kumar, Influence of Ni2+ substitution on the structural, dielectric and magnetic properties of Cu–Cd ferrite nanoparticles. J. Alloys Compd. 573, 198–204 (2013)
H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites, RSC Adv. 6, 6589–6597 (2016)
M.J. Iqbal, R.A. Khan, S. Mizukami, T. Miyazaki, Mossbauer, magnetic and microwave absorption characteristics of substituted W-type hexaferrites nanoparticles. Ceram. Int. 38, 4097–4103 (2012)
S.M. Patange, S.E. Shirsath, K.S. Lohar, S.S. Jadhav, N. Kulkarni, K.M. Jadhav, Electrical and switching properties of NiAlxFe2xO4 ferrites synthesized by chemical method. Phys. B. 406, 663–668 (2011)
S. Verma, J. Chand, M. Singh, Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0.2Mn0.5Ni0.3AlyFe2yO4 ferrites synthesized by citrate precursor method. J. Alloy. Compd. 587, 763–770 (2014)
M A Ahmed, S F Mansour, M A Abdo, Electrical properties of Cu substituted Co nano ferrite. Phys. Scr. 86, 025705 (2012)
R. S. Yadav, J. Havlica, J. Masilko, J. Tkacz, I. Kuritka, J. Vilcakova, Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method, J Mater Sci 27, 5992–6002 (2016)
S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, T.K. Nath, Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals. J. Alloys Compd. 656, 887–896 (2016)
Y. Pu, Z. Dong, P. Zhang, Y. Wu, J. Zhao, Y. Luo, Dielectric, complex impedance and electrical conductivity studies of the multiferroic Sr2FeSi2O7-crystallized glass-ceramics. J. Alloys Compd. 672, 64–71 (2016)
A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method, J. Alloys Compd. 622, 687–694 (2015)
M.M. Costa, G.F.M. Pires, Jr., A.J. Terezo, M.P.F. Grac¸, A.S.B. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J. Appl. Phys. 110, 034107 (2011)
D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, S.R. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys 115, 243904 (2014)
N. Ortega, Ashok Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1–xO3/CoFe2O4 layered thin films. Phys. Rev. B 77, 014111 (2008)
S. Nasri, A. Oueslati, I. Chaabane, M. Gargouri, AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound. Ceram. Int. 42, 14041–14048 (2016)
M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Grac, A.S.B. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22(Co2Y) doped with Bi2O3. J. Appl. Phys 110, 034107 (2011)
R.K. Panda, R. Muduli, S.K. Kar, D. Behera, Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy. J. Alloys Compd. 587, 481–486 (2014)
R.N. Bhowmik, I.P. Muthuselvam, Dielectric properties of magnetic grains in CoFe1.95Ho0.05O4 spinel ferrite. J. Magn. Magn. Mater. 335, 64–74 (2013)
S. Narayanan, A.K. Baral, V. Thangadurai, Dielectric characteristics of fast Li ion conducting garnet-type Li5+2xLa3Nb2–xYxO12 (x = 0. 25, 0.5 and 0.75)., Phys. Chem. Chem. Phys. DOI:10.1039/c6cp02287a
K. Rasool, M.A. Rafiq, M. Ahmad, Z. Imran, M.M. Hasan, TiO2 nanoparticles and silicon nanowires hybrid device: Role of interface on electrical, dielectric, and photodetection properties. Appl. Phys. Lett. 101, 253104 (2012)
D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys 66(8), 3850–3856 (1989)
Acknowledgements
This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yadav, R.S., Kuřitka, I., Vilcakova, J. et al. Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2−xLaxO4 nanoparticles. J Mater Sci: Mater Electron 28, 9139–9154 (2017). https://doi.org/10.1007/s10854-017-6648-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-017-6648-5
Keywords
- Ferrite
- Octahedral Site
- CoFe2O4
- Cation Distribution
- Raman Mode