Skip to main content
Log in

Dielectric, electrical and magnetic properties of La doped BiFeO3–PbZrO3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The composites of 0.5(BiLayFe1−yO3)–0.5(PbZrO3) [y = 0.05, 0.10, 0.15 and 0.20] were synthesized through solid-state reaction technique. The X-ray diffraction data confirms the rhombohedral structure of the above systems at room temperature. From the SEM, it is shown that the grains were inhomogeneously distributed over the surface of the composites. The dielectric constant and loss of the composites increased with rise in temperature. The low remanent polarization (0.005, 0.006, 0.008, and 0.004 μC/cm2) for 0.5(BiLayFe1−yO3)–0.5(PbZrO3) [y = 0.05, 0.10, 0.15 and 0.20] respectively shows the weak ferroelectric nature. The Nyquist plot showed the contribution of bulk effect and slight indication of grain boundary effect. The presence of temperature dependent relaxation process occurs in the material. The activation energies calculated from the ac conductivity using least square fitting. The dc and ac conductivity increases with rise in temperature. The ac conductivity spectrum obeyed Johnscher universal power law. The low remanent magnetization was found to be 0.010, 0.009, 0.008 and 0.005 emu/gm for 0.5(BiLayFe1−yO3)–0.5(PbZrO3) [y = 0.05, 0.10, 0.15 and 0.20] respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. E. Cross, R. E. Newnham, History of Ferroelectrics, The American Ceramic Society: Reprinted from the Ceramics and Civilization, Volume II, (1987)

  2. V.F. Freitas, G.S. Dias, O.A. Protzek, D.Z. Montanher, I.B. Catellani, D.M. Silva, L.F. Cótica, I.A. Santos, Structural phase relations in perovskite-structured BiFeO3-based multiferroic compounds. J. Adv. Ceram. 2, 103–111 (2013)

    Article  Google Scholar 

  3. W. Sakamoto, A. Iwata, T. Yogo, Ferroelectric properties of chemically synthesized perovskite BiFeO3–PbTiO3 thin films. J. Appl. Phys 104, 104106–104108 (2008)

    Article  Google Scholar 

  4. M.J. Lancaster, J. Powell and A. Porch, Thin-film ferroelectric microwave devices. Supercond. Sci. Technol. 11, 1323–1332 (1998)

    Article  Google Scholar 

  5. G.H. Lin, R. Fu, S. He, J. Sun, X. Zhang, L. Sengupta, Reliability and stability of novel tunable thin film. Mat. Res. Soc. Symp. Proc. 720, 15 (2002)

    Google Scholar 

  6. W.J. Kim, W. Chang, S.W. Kirchoefer, J.M. Pond, J.A. Bellotti, S.B. Qadri, Microwave properties of tetragonally distorted (Ba0.5Sr0) TiO3 thin films. Appl. Phys. Lett. 76, 1185–1187 (2004)

    Article  Google Scholar 

  7. S. Mohanty, A. Kumar and R. N. P. Choudhary, Studies of structural, dielectric, electrical and ferroelectric characteristics of BiFeO3 and (Bi0.5K0.5)(Fe0.5Ta0.5)O3. J. Mater. Sci. 26, 9640–9648 (2015)

    Google Scholar 

  8. QiaoXia Xing, Zhonglin Han, Shifeng Zhao, Crystal structure and magnetism of BiFeO3 nanoparticles regulated by rare-earth Tb substitution. J. Mater. Sci. 28, 295–303 (2017)

    Google Scholar 

  9. T. Yamamoto, Ferroelectric properties of the PbZr O3 –PbTi O3 system. Jpn. J. Appl. Phys. 35, 5104–5108(1996)

    Article  Google Scholar 

  10. R.W. Whatmorel, A.M. Glazer, Structural phase transitions in lead zirconate. J. Phys. C 12, 1505–1520 (1979)

    Article  Google Scholar 

  11. E. Sawaguchi, G. Shirane, Y. Takagi, Phase transition in lead zirconate. J. Phys. Soc. Jpn. 6, 333–339 (1951)

    Article  Google Scholar 

  12. E. Sawaguchi, H. Maniwa, S. Hoshino, Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078 (1951)

    Article  Google Scholar 

  13. V.J. Tennery, A study of the phase transitions in PbZrO3. J. Electrochem. Soc. 112, 1117–1120 (1965)

    Article  Google Scholar 

  14. V.J. Tennery, High-temperature phase transitions in PbZrO3. J. Am. Ceram. Soc. 49, 483–486 (1966)

    Article  Google Scholar 

  15. L. Goulpeau, Domain Structure Observed on Antiferroelectric PbZrO3 Ceramics. phys. status solidi (b). 32, K1-K2 (1969)

    Article  Google Scholar 

  16. K. Singh, Antiferroelectric lead zirconate, a material for energy storage. Ferroelectrics. 94, 433 (1989)

    Article  Google Scholar 

  17. S.A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, S.K. Korchagina, L.F. Rybakova, A. Hewat, Influence of PbZrO3 doping on the structural and magnetic properties of BiFeO3. Solid State Sci. 10, 1875–1885 (2008)

    Article  Google Scholar 

  18. S. K. Satpathy, N. K. Mohanty, A. K. Behera, B. Behera, P. Nayak, Electrical conductivity of Gd doped BiFeO3-PbZrO3 composite. Front. Mater. Sci. 7, 295–301 (2013).

    Article  Google Scholar 

  19. S.K. Satpathy, N.K. Mohanty, A.K. Behera, B. Behera, Dielectric and electrical properties of 0.5(BiGd0:05Fe0:95O3)–0.5(PbZrO3) composite. Mater. Science-Poland. 32, 59–65 (2014)

    Article  Google Scholar 

  20. S.K. Satpathy, N.K. Mohanty, A.K. Behera, B. Behera, P. Nayak, S. Sen, Dielectric and electrical properties of BiFeO3-PbZrO3 composites. J. Electron. Mater. 44, 4290–4300 (2015)

    Article  Google Scholar 

  21. V. Kothai, R. Ranjan, Synthesis of BiFeO 3 by carbonate precipitation. Bull. Mater. Sci. 35, 157–161 (2012)

    Article  Google Scholar 

  22. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction. 3rd Ed., (Prentice-Hall Inc., New Jersy, 2001), 167–171

    Google Scholar 

  23. M. Ghasemifard, M. Daneshvar, M. Ghamari, The effects of annealing process on dielectric and piezoelectric properties of BMT-base lead-free ceramics. World J. Nano Sci. Eng. 3, 100–108 (2013)

    Article  Google Scholar 

  24. I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. 74, 125–143 (1976)

    Article  Google Scholar 

  25. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, S. R. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102–024110 (2009)

    Article  Google Scholar 

  26. S. Sen, P. Pramanik, R.N.P. Choudhary, Impedance spectroscopy study of the nanocrystalline ferroelectric (PbMg)(ZrTi)O3system. Appl. Phys. 82, 549–557 (2006)

    Article  Google Scholar 

  27. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D 32, R57 (1999)

    Article  Google Scholar 

  28. S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 8, 256–263 (2004)

    Article  Google Scholar 

  29. R. Tilley, Understand Solids-The Science of Materials (Wiley, Chichester, 2004), pp. 383–384

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support through DRS-I of UGC under SAP for the development of research work in the School of Physics, Sambalpur University and one of the author (BB) acknowledges to the DST under SERC Fast Track Scheme for Young Scientist (Project No. SR/FTP/PS-036/2011 New Delhi, India) and SKS acknowledges to UGC for providing UGC-BSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banarji Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpathy, S.K., Sen, S. & Behera, B. Dielectric, electrical and magnetic properties of La doped BiFeO3–PbZrO3 composites. J Mater Sci: Mater Electron 28, 9102–9113 (2017). https://doi.org/10.1007/s10854-017-6644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6644-9

Keywords

Navigation