Skip to main content
Log in

In-situ template synthesis of a polymer/nanoparticles nanohybrid using hyperbranched poly(aryl ether ketone)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured ZnS/hyperbranched poly(aryl ether ketone) (ZnS/HPAEK) hybrid material was synthesized by a facile hydrothermal reaction of HPAEK–Zn(Ac)2⋅2H2O in DMF. ZnS nanoparticles were prepared by heterogeneous stirring of carboxylic-functionalized hyperbranched poly(aryl ether ketone) (PCA-HPAEK)–Zn(Ac)2⋅2H2O in DMF with DMF solution of thiourea. The obtained nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), UV–Vis spectroscopy and photoluminescence. FTIR and HRTEM studies confirmed the formation of ZnS QDs with small particle size. And the results of photoluminescence measurement showed that the nanocomposites exhibited distinct luminescence properties. Differential scanning calorimetry and thermogravimetric analysis studies indicated that the nanocomposites exhibited excellent heat resistance. In general, a new ZnS/PCA-HPAEK nanohybrid was synthesized without ligand exchange, and had good optical properties and excellent heat resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005)

    Article  Google Scholar 

  2. A.P. Alivisatos, Science 27, 1933–1997 (1996)

    Google Scholar 

  3. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wua, Y. Bando et al., Prog. Mater. Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  4. A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, V.I. Klimov, Nano. Lett. 5, 1039–1044 (2005)

    Article  Google Scholar 

  5. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, J. Mater. Sci. 28, 276–283 (2017)

    Google Scholar 

  6. M.J. MacLachlan, I. Manners, G.A. Ozin, Adv. Mater. 12, 675–681 (2000)

    Article  Google Scholar 

  7. E. Katz, I. Willner, Angew. Chem. Int. Ed. 33, 6042–6108 (2004)

    Article  Google Scholar 

  8. Z. Ahmad, M.I, Sarwar, J.E, Mark. J. Mater. Chem. 7, 259–263 (1997)

    Article  Google Scholar 

  9. K. Naka, H. Itoh, S. Y. Park, Y. Chujo, Polym. Bull. 52, 171–176 (2004)

    Article  Google Scholar 

  10. H. Liu, J.B. Edel, L.M. Bellan, H.G. Graighead, Small 2, 495–499 (2006)

    Article  Google Scholar 

  11. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102–1105 (2000)

    Article  Google Scholar 

  12. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013–2016 (1998)

    Article  Google Scholar 

  13. K.R. Choudhury, Y. Sahoo, T.Y. Ohulchanskyy, P.N. Prasad, Appl. Phys. Lett. 87, 073110 (2005)

    Article  Google Scholar 

  14. T. Igarashi, T. Isobe, M. Senna, Phys. Rev. B 56, 6444–6445 (1997)

    Article  Google Scholar 

  15. T.T.Q. Hoa, N.D. The, S. McVitie, N.H. Nama, L.V. Vu, T.D. Canh et al., Opt. Mater. 33, 308–314 (2011)

    Article  Google Scholar 

  16. V.L. Gayou, B.S. Hernandez, R.D. Macuil, G. Zavala, P. Santiago, A.I. Olivia, J. Nano. Res. 9, 125–132 (2010)

    Article  Google Scholar 

  17. Y. Diekmann, H. Colfen, H. Hoffman, A. Petri-fink, Anal. Chem 81, 3889–3895 (2009)

    Article  Google Scholar 

  18. B.Y. Geng, X.W. Liu, Q.B. Du, X.W. Wei, L.D. Zhang, Appl. Phys. Lett. 88, 163104 (2006)

    Article  Google Scholar 

  19. N. Kouklin, L. Menon, A.Z. Wong, D.W. Thompson, J.A. Woollam, P.F. Williams, Appl. Phys. Lett. 79, 4423 (2001)

    Article  Google Scholar 

  20. S.K. Dey, D. Sarkar, J. Sci. Mater. 25, 5638–5645 (2014)

    Google Scholar 

  21. D. Gupta, D. Singh, N.C. Kothiyal, A.K. Saini, V.P. Singh, D. Pathania, Int. J. Biol. Macromol 74, 547–557 (2015)

    Article  Google Scholar 

  22. M.K. Sharma, P. Rohani, S. Liu, M. Kaus, M.T. Swihart, Langmuir 31, 413–423 (2015)

    Article  Google Scholar 

  23. H.C. Jeon, T.W. Kang, A. Jain, S. Panwar, S. Bala, S. Kamboj, S. Kumar, J. Mater. Sci. 26, 5980–5986 (2015)

    Google Scholar 

  24. X. Wang, D. Li, Y. Guo, X. Wang, Y. Du, R. Sun, Opt. Mater. 34, 646–651 (2012)

    Article  Google Scholar 

  25. Z.Q. Mamiyev, N.O. Balayeva, Chem. Phys. Lett. 646, 69–74 (2016)

    Article  Google Scholar 

  26. X.J. Li, S.L. Zhang, H. Wang et al., Polym. Int. 59, 1360–1366 (2010)

    Article  Google Scholar 

  27. M. Strukelj, A.S. Hay, Macromolecules 24, 6870–6871 (1991)

    Article  Google Scholar 

  28. C.F. Shu, C.M. Leu, Macromolecules 32, 100–105 (1999)

    Article  Google Scholar 

  29. A.A. Khosravi, M. Kundu, L. Jatwa et al., Appl. Phys. Lett. 67, 2702–2704 (1995)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Science and technology innovation fund of Changchun University of Science and Technology (XJJLG-2015-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. In-situ template synthesis of a polymer/nanoparticles nanohybrid using hyperbranched poly(aryl ether ketone). J Mater Sci: Mater Electron 28, 8864–8871 (2017). https://doi.org/10.1007/s10854-017-6615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6615-1

Keywords

Navigation