Skip to main content
Log in

Effects of Zn-doping on the electrical properties of ZnxFe2.5−xNi2Mn1.5O8 (0≤ x ≤ 0.8) NTC ceramics by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ZnxFe2.5-xNi2Mn1.5O8(0 ≤ x ≤ 0.8) ceramics with different compositions were synthesized by co-precipitation method. The effects of Zn doping on the structure, electrical properties and stability of the ceramic samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electrical measurement and X-ray photoelectron spectroscopy (XPS) analysis. It was found that, as the Zn doping content in the ZnxFe2.5-xNi2Mn1.5O8 samples increased, both the grain size and the density decreased. The XPS analysis confirmed the conduction of as-sintered ceramic structure was mainly due to hopping of electrons between Mn3+/Mn4+ and Fe2+/Fe3+ ions. The values of B 25/50 constant, ρ 25 and E a of ZnxFe2.5-xNi2Mn1.5O8 ceramic samples were in the range of 5375–4177 K, 9042–18 KΩ•cm and 0.464–0.360 eV, respectively. The values of relative resistance drift (ΔR/R 0 ) were in the range of 0.58–2.78% and had a minimum value with the Zn content of x = 0.2 after aging test at 125 °C for 500 h. This suggests that the electrical properties of ZnxFe2.5-xNi2Mn1.5O8 ceramic system can be adjusted to desired values by controlling the Zn ion doping content. Besides, the stability of Mn-Ni-Fe-O ceramic can be effectively improved by Zn doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.J. Ma, Y.F. Liu, Y.N. Lu, J. Mater. Sci. Mater. Electron. 26, 7238 (2015).

    Article  Google Scholar 

  2. A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009).

    Article  Google Scholar 

  3. K. Park, D.Y. Bang, J. Mater. Sci. Mater. Electron. 14, 81 (2003)

    Article  Google Scholar 

  4. L. Chen, W.W. Kong, J.C. Yao, J. Mater. Sci. Mater. Electron. 27, 1713 (2016)

    Article  Google Scholar 

  5. J. Takahashi, A. Miura, H. Itoh, Ceram. Int. 34, 853 (2008)

    Article  Google Scholar 

  6. F. Chen, J.H. Wang, H.M. Zhang, J. Mater. Sci. Mater. Electron. 26, 1374 (2015)

    Article  Google Scholar 

  7. D. Theyvaraju, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci. Mater. Electron. 24, 5189 (2013)

    Article  Google Scholar 

  8. W.A. Groen, C. Metzmacher, V. Zaspalis, J. Eur. Ceram. Soc. 21, 1793 (2001)

    Article  Google Scholar 

  9. Z.B. Wang, C.H. Zhao, P.H. Yang, J. Eur. Ceram. Soc. 2833, 26 (2006)

    Google Scholar 

  10. J.Y. Wang, J.J. Zhang, Mater. Sci. Eng. B. 176, 616 (2011)

    Article  Google Scholar 

  11. R.K Sharma, R. Ghose, Ceram. Int. 41, 14684 (2015).

    Article  Google Scholar 

  12. S.G. Wang, A.M. Chang, H.M. Zhang, Mater. Chem. Phys. 110, 83 (2008)

    Article  Google Scholar 

  13. H.M. Zhang, A.M. Chang, C.W. Peng. Microelectron. Eng. 88, 2934 (2011)

    Article  Google Scholar 

  14. S.G. Fritsch, C. Chanel, J. Sarrias, Solid. State. Ion. 128, 233 (2000)

    Article  Google Scholar 

  15. A.R. Bueno, M.L. Gregori, M.C.S. Nóbrega, Mater, Chem. Phys. 105, 229 (2007)

    Article  Google Scholar 

  16. C. Zhao, Y. Zhao, J. Mater. Sci: Mater. Electron. 23, 1788 (2012)

    Google Scholar 

  17. K. Park, J.K. Lee, Scripta. Mater. 57, 329 (2007).

    Article  Google Scholar 

  18. D.A. Zatsepin, D.W. Boukhvalo, N.V. Gavrilov, Appl. Surf. Sci. 387, 1093 (2016)

    Article  Google Scholar 

  19. M. P. Michalska, A. Kowalczyk, G. Chełkowska, J. Alloy. Compd. 385, 44 (2004)

    Article  Google Scholar 

  20. A. Kania, S. Miga, E. Talik, J. Eur. Ceram. Soc. 36, 3369 (2016)

    Article  Google Scholar 

  21. H.M. Liu, G.L. Wei, Z. Xu, Appl. Surf. Sci. 389, 438 (2016)

    Article  Google Scholar 

  22. L.Y. Deng, F.T. Lin, Q.Q. Yu, J. Mater. Sci. 51, 7491 (2016)

    Article  Google Scholar 

  23. E.S. Ilton, J.E. Post, P.J. Heaney, Appl. Surf. Sci. 366, 475 (2016)

    Article  Google Scholar 

  24. A.K. Singh, A. K. Singh, T.C. Goelb. J. Magn, Magn. Mater. 281, 276 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Autonomous Region Youth Science and technology innovation personnel training project (No. QN2015JQ010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimin Zhang or Aiming Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Chen, M., Liu, T. et al. Effects of Zn-doping on the electrical properties of ZnxFe2.5−xNi2Mn1.5O8 (0≤ x ≤ 0.8) NTC ceramics by co-precipitation method. J Mater Sci: Mater Electron 28, 8655–8661 (2017). https://doi.org/10.1007/s10854-017-6589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6589-z

Keywords

Navigation