Structural and optical properties of ZnS:Mn micro-powders, synthesized from the charge with a different Zn/S ratio

  • Yu. Yu. Bacherikov
  • N. P. Baran
  • I. P. Vorona
  • A. V. Gilchuk
  • A. G. Zhuk
  • Yu. O. Polishchuk
  • S. R. Lavorik
  • V. P. Kladko
  • S. V. Kozitskii
  • E. F. Venger
  • N. E. Korsunska
Article
  • 75 Downloads

Abstract

The influence of Zn/S ratio in the charge on structural and optical properties of ZnS:Mn powders produced by high-temperature self-propagated synthesis was investigated. The samples was shown to consist of mixed-polytypes ZnS crystallites with hexagonal (2H) and cubic (3C) phases, the contribution of the latter increases with the sulfur content in the charge. The most homogeneous size distribution were found at stoichiometric Zn/S ratio. The Zn/S relation affects the Mn incorporation into ZnS lattice. The highest quantity of incorporated Mn is observed at stoichiometric Zn/S relation while lowest one is realized at Zn excess. Besides, the distribution of manganese ions in the blocks, which compose the crystallites, was found to be inhomogeneous, their concentration decreases from crystallites surface to the depth. Mn ions are nearer to the surface in ZnS:Mn synthesized with Zn excess. At Mn concentration in the charge of 1 wt% the shift of ZnS band edge to low energy side is observed, that is ascribed to formation of solid solution ZnS–MnS with lower band gap value.

References

  1. 1.
    Y.A. Ono, Electroluminescent displays, (River Edge, NJ: World Scientific, Singapore, 1995)CrossRefGoogle Scholar
  2. 2.
    J.H. Park, S.H. Lee, J.S. Kim, A.K. Kwon, H.L. Park, S.D. Han, White-electroluminescent device with ZnS:Mn, Cu, Cl phosphor. J. Lumin. 126, 566–570 (2007)CrossRefGoogle Scholar
  3. 3.
    S. Ummartyotin, N. Bunnak, J. Juntero, M. Sain, H. Manuspiya, Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci. 14, 299–394 (2012)CrossRefGoogle Scholar
  4. 4.
    B.A. Smith, J.Z. Zhang, A. Joly, J. Liu, Luminescence decay kinetics of Mn2+-doped ZnS nanoclusters grown in reverse micelles. Phys. Rev. B 62, 2021–2028 (2000)CrossRefGoogle Scholar
  5. 5.
    G. Hajisalem, M. Maradi, N. Taghavinia, M. Houshiar, The two-step thermochemical growth of ZnS:Mn nanocrystals and a study of luminescence evolution. Nanotechnology 20, 095706 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Yang, J. Zhao, L. Song, L. Shen, Z. Wang, L. Wang, D. Zhang, Photoluminescent properties of ZnS:Mn nanocrystals prepared in inhomogeneous system. Mater. Lett. 57, 2287–2291 (2003)CrossRefGoogle Scholar
  7. 7.
    R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419 (1994)CrossRefGoogle Scholar
  8. 8.
    A. Jrad, W. Naffouti, T.B. Nasr, S. Ammar, N. Turki-Kamoun, J. Mater. Sci. (2016). Doi: 10.1007/s10854-016-5682-z Google Scholar
  9. 9.
    S.T. Arunaa, A.S. Mukasyan, Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008)CrossRefGoogle Scholar
  10. 10.
    A.A. Borisov, L. De Luca, A. Merzhanov, Self-Propagating High-Temperature Synthesis of Materials, ed. By B. Scheck, Combustion Science & Technology Book Series, V.5, Taylor & Francis, New York, 2002Google Scholar
  11. 11.
    J.H.S. Lee, S. Goroshin, A. Yoshinaka, M. Romano, J. Jiang, I. Hooton, F. Zhang, Shock compression of condensed matter, ed. By M.D. Furnish, L.C. Chhabildas, R.S. Hixton (American Institute of Physics, Melville, 2000)Google Scholar
  12. 12.
    S.V. Kozytckyy, V.P. Pysarskyy, D.D. Polishchuk, Obtaining of ZnSe by means of self-propagating high-temperature synthesis. PCSS 4, 229–233 (2003)Google Scholar
  13. 13.
    B. Krupińska, Z. Rdzawski, M. Krupiński, K. Labisz, Microstructure investigations of cast Zn–Al alloys. JAMME 61, 12–19 (2013)Google Scholar
  14. 14.
    S.V. Kozitsky, A.N. Krasnov, Formation “qiqantic” crystalls in crystallization of ZnS. J. Cryst. Growth 165, 166–168 (1996)CrossRefGoogle Scholar
  15. 15.
    A.G. Merzhanov, A.S. Rogachev, Structural macrokinetics of SHS processes. Pure Appl. Chem. 64, 941–953 (1992)CrossRefGoogle Scholar
  16. 16.
    S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Doping semiconductor nanocrystals. Nat. Lett. 436, 91–94 (2005)CrossRefGoogle Scholar
  17. 17.
    G.M. Dalpian, J.R. Chelikowsky, Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 96, 226802 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Rubenstein, Zn-rich liquids of Zn-S system between 1000 and 1300 °C. J. Crystal. Growth 41, 311–316 (1977)CrossRefGoogle Scholar
  19. 19.
    S.A. Altshuler, B.M. Kozyrev, Electron paramagnetic resonance in compounds of transition elements. (Nauka, Moscow, 1972), p. 670Google Scholar
  20. 20.
    C. Rudowicz, S.K. Misra, Spin-Hamiltonian formalisms in electron magnetic resonance (EMR) and related spectroscopies. Appl. Spectrosc. Rev. 36, 11–63 (2001)CrossRefGoogle Scholar
  21. 21.
    I.P. Vorona, V.G. Grachev, S.S. Ishchenko, N.P. Baran, Yu.Yu. Bacherikov, A.G. Zhuk, V.V. Nosenko, Structure study of low-dimensional ZnS powders using EPR of Mn2+. Ions. Appl. Spectr. 3, 60–65 (2016)Google Scholar
  22. 22.
    N.E. Korsunska, Yu.Yu. Bacherikov, T.R. Stara, V.P. Kladko, N.P. Baran, Yu. O. Polishchuk, A.V. Kuchuk, A.G. Zhuk, Ye.F. Venger, Features of ZnS-powder doping with a Mn impurity during synthesis and subsequent annealing. Semiconductors 47, 713–720 (2013)CrossRefGoogle Scholar
  23. 23.
    T.H. Yeom, Y.H. Lee, T.S. Hahn, M.H. Oh, Electron-paramagnetic-resonance study of the Mn2+ luminescence center in ZnS:Mn powder and thin films. J. Appl. Phys. 79, 1004–1007 (1996)CrossRefGoogle Scholar
  24. 24.
    N.K. Morozova, D.A. Mideros, N.D. Danilevich, Absorption, luminescence excitation, and infrared transmittance spectra of ZnS(O)–ZnSe(O) crystals in the context of the band anticrossing theory. Semiconductors 43, 162–167 (2009)CrossRefGoogle Scholar
  25. 25.
    N.K. Morozova, I.A. Karetnikov, V.V. Blinov, E.M. Gavrishchuk, A study of luminescence centers related to copper and oxygen in ZnSe. Semiconductors 35, 24–32 (2001)CrossRefGoogle Scholar
  26. 26.
    N.D. Borisenko, V.I. Klimenko, B.A. Polezhaev, Effect of the excitation mode on the emission spectrum of manganese in zinc sulfide. Zh. Prikl. Spektrosk. 50, 475–477 (1989)Google Scholar
  27. 27.
    J.E. Nicholls, J.J. Davis, B.C. Cavenott, Spin-dependent donor-acceptor pair recombination in ZnS crystals showing the self-activated emission. J. Phys. C 12, 361–379 (1979)CrossRefGoogle Scholar
  28. 28.
    N.D. Borisenko, B.A. Polezhaev, Lifetime of excited Mn states in zinc sulfide. Zh. Prikl. Spektrosk. 53, 1020–1022 (1990)Google Scholar
  29. 29.
    H.-E. Gummlich, Electro- and photoluminescence properties of Mn in ZnS and ZnCdS. J. Lumin. 23, 73–99 (1981)CrossRefGoogle Scholar
  30. 30.
    M.F. Bulanyi, B.A. Polezhaev, T.A. Prokof’ev, I.M. Chernenko, Excitation spectra and structure of luminescence centers of manganese ions in single crystals of zinc sulfide. Appl. Spectrosc. 67, 282–286 (2000)CrossRefGoogle Scholar
  31. 31.
    V.F. Agekian, Intracenter transitions of iron-group ions in II-VI semiconductor matrices. Phys. Solid State 44, 2013–2030 (2002)CrossRefGoogle Scholar
  32. 32.
    G. Counio, S. Esnouf, T. Gacoin, J.-P. Boilot, CdS:Mn nanocrystals in transparent xerogel matrices: synthesis and luminescence properties. J. Phys. Chem. 100, 20021–20026 (1996)CrossRefGoogle Scholar
  33. 33.
    Yu.Yu. Bacherikov, I.P. Vorona, A.A. Konchits, S.V. Optasyuk, S.V. Kozitskiy, K.D. Kardashov, The paramagnetic and luminescence properties of single-stage syntezed ZnS:Cu. Funct. Mater. 17, 158–163 (2010)Google Scholar
  34. 34.
    Yu.Yu. Bacherikov, S.V. Optasyuk, Diffusional relaxation in ZnS after thermal doping at 800 °C. Appl. Spectrosc. 77, 95–103 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yu. Yu. Bacherikov
    • 1
  • N. P. Baran
    • 1
  • I. P. Vorona
    • 1
  • A. V. Gilchuk
    • 2
  • A. G. Zhuk
    • 1
  • Yu. O. Polishchuk
    • 1
  • S. R. Lavorik
    • 1
  • V. P. Kladko
    • 1
  • S. V. Kozitskii
    • 3
  • E. F. Venger
    • 1
  • N. E. Korsunska
    • 1
  1. 1.V.E. Lashkaryov Institute of Semiconductor Physics NAS of UkraineKyivUkraine
  2. 2.National Technical University of Ukraine «Kyiv Polytechnic Institute»KyivUkraine
  3. 3.Odessa National Maritime AcademyOdessaUkraine

Personalised recommendations