In-situ and ex-situ PIT fabrication of FeSe superconducting tapes

  • Shengnan ZhangEmail author
  • Jianqing Feng
  • Xiaobo Ma
  • Jixing Liu
  • Chengshan Li
  • Pingxiang Zhang


FeSe Superconducting tapes were fabricated with powder in tube (PIT) process. Both in-situ and ex-situ PIT processes were performed with Se and sintered Fe–Se powders as precursor powders, respectively. The influences of different fabrication techniques on the phase evolution mechanism, morphology and superconducting properties of these tapes were systematically investigated. It was noticed that during the in-situ PIT process, large content of tetragonal β-FeSe phase could be formed under low temperature. However, the obtained β-FeSe phase was not stable with increasing temperature and decomposed into δ-FeSe and Fe. Although with increasing temperatures, β-FeSe phase content increased again, the final β-FeSe phase content could not reach 100%, with relatively large content of δ-FeSe particles distributed uniformly in β-FeSe matrix. On the other hand, during the ex-situ PIT process, higher temperature was necessary for the formation of higher ratio of β-FeSe phase from δ-FeSe phase. With the increasing temperature, β-FeSe phase content increased monotonously, and the β-FeSe content of nearly 100% was obtained under the sintering temperature of 1000 °C. Due to the different Fe/Se ratio in the obtained β-FeSe phase, a superconducting transition at 8.3 K was obtained on the ex-situ FeSe tape. Further optimization of this PIT process for larger superconducting phase content is on the way.


Sinter Temperature Sinter Process FeSe Superconducting Property Evacuate Quartz Ampoule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financially supported by National Natural Science Foundation of China under contract No. 51302223, the national ITER program of China under contract No. 2013GB110001, and the Innovative Research Team of Shaanxi province under contract No. 2013KCT-07.


  1. 1.
    F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, M.K. WU, Proc. Natl. Acad. Sci. USA 105, 14262–14264 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Bendele, E. Pomjakushina, K. Conder, R. Khasanov, H. Keller, J. Supercond. Nov. Magn. 27, 965–968 (2014)CrossRefGoogle Scholar
  3. 3.
    S.L. He, J.F. He, W.H. Zhang, L. Zhao, D.F. Liu, X. Liu, D.X. Mou, Y.B. Ou, Q.Y. Wang, Z. Li, L.L. Wang, Y.Y. Peng, Y. Liu, C.Y. Chen, L. Yu, G.D. Liu, X.L. Dong, J. Zhang, C.T. Chen, Z.Y. Xu, X. Chen, X.C. Ma, Q.K. Xue, X.J. Zhou, Nat. Mater. 12, 605–610 (2013)CrossRefGoogle Scholar
  4. 4.
    W. Li, H. Ding, P. Zhang, P. Deng, K. Chang, K. He, S. Ji, L. Wang, X. Ma, J. Wu, J.-P. Hu, Q.-K. Xue, X. Chen, Phys. Rev. B 88, 140506 (2013)CrossRefGoogle Scholar
  5. 5.
    W.H. Zhang, Z. Li, F.S. Li, H.M. Zhang, J.P. Peng, C.J. Tang, Q.Y. Wang, K. He, X. Chen, L.L. Wang, X.C. Ma, Q.K. Xue, Phys. Rev. B 89, 060506(R) (2014)CrossRefGoogle Scholar
  6. 6.
    D.F. Liu, W. Zhang, D. Mou, J. He, Y.B. Ou, Q.Y. Wang, Z. Li, L. Wang, L. Zhao, S. He, Y. Peng, X. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, J. Hu, X. Chen, X. Ma, Q.K. Xue, X.J. Zhou, Nature Commun. 3, 931 (2012)CrossRefGoogle Scholar
  7. 7.
    M.H. Fang, J.H. Yang, F.F. Balakirev, Y. Kohama, J. Singleton, B. Qian, Z.Q. Mao, H.D. Wang, H.Q. Yuan, Phys. Rev. B 81, 020509 (2010)CrossRefGoogle Scholar
  8. 8.
    Y.W. Ma, Supercond. Sci. Technol. 25, 113001 (2012)CrossRefGoogle Scholar
  9. 9.
    C.S. Yadav, P.L. Paulose, Solid State Commun. 151, 216–218 (2011)CrossRefGoogle Scholar
  10. 10.
    W.H. Zhang, Y. Sun, J.S. Zhang, F.S. Li, M.H. Guo, Y.F. Zhao, J.M. Zhang, J.P. Peng, Y. Xing, H.C. Wang, T. Fujita, A. Hirata, Z. Li, H. Ding, C.J. Tang, M. Wang, Q.Y. Wang, L. He, S.H. Ji, X. Chen, J.F. Wang, Z.C. Xia, L. Li, Y.Y. Wang, J. Wang, L.L. Wang, M.W. Chen, Q.K. Xue, X.C. Ma, Chin. Phys. Lett 31, 017401 (2014)CrossRefGoogle Scholar
  11. 11.
    W.D. Si, S.J. Han, X.Y. Shi, S.N. Ehrlich, J. Jaroszynski, A. Goyal, Q. Li, Nature Commun. 4, 1347 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Mizuguchi, H. Izawa, T. Ozaki, Y. Takano, O. Miura, Supercond. Sci. Technol. 24, 125003 (2011)CrossRefGoogle Scholar
  13. 13.
    Z.S. Gao, Y.P. Qi, L. Wang, D.L. Wang, X.P. Zhang, C. Yao, Y.W. Ma, Supercond. Sci. Technol. 24, 065022 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Mizuguchi, K. Deguchi, S. Tsuda, T. Yamaguchi, H. Takeya, H. Kumakura, Y. Takano, Appl. Phys. Expr. 2, 083004 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Ozaki, K. Deguchi, Y. Mizuguchi, Y. Kawasaki, T. Tanaka, T. Yamaguchi, S. Tsuda, H. Kumakura, Y. Takano, Supercond. Sci. Technol. 24, 105002 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Tsukada, K.E. Luna, R.H. Hammond, M.R. Beasley, J.F. Zhao, S.H. Risbud, App. Phys. A 104, 311–318 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Okamoto, J. Phase Equilib. 12, 383–389 (1991)CrossRefGoogle Scholar
  18. 18.
    S.R. Svendsen, Acta Chem. Scand. 26, 3757–3774 (1972)CrossRefGoogle Scholar
  19. 19.
    H. Izawa, Y. Mizuguchi, T. Ozaki, Y. Takano, O. Miura, Jpn. J. Appl. Phys. 51, 010101 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Rahman, I.G. Kim, A.J. Freeman, J. Phys. 24, 095502 (2012)Google Scholar
  21. 21.
    M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, H.H. Chang, T.K. Chen, S.M. Rao, B.H. Mok, C.L. Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu, T.P. Perng, Physica C 469, 340–349 (2009)CrossRefGoogle Scholar
  22. 22.
    T. Ozaki, K. Deguchi, Y. Mizuguchi, Y. Kawasaki, T. Tanaka, H. Yamaguchi, H. Kumakura, Y. Takano, J. Appl. Phys. 111, 112620 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Izawa, Y. Mizuguchi, M. Fujioka, Y. Takano, O. Miura, IEEE Trans. Appl. Supercond. 24, 6900304 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Izawa, Y. Mizuguchi, Y. Takano, O. Miura, Physica C 504, 77–80 (2014)CrossRefGoogle Scholar
  25. 25.
    S.N. Zhang, X.B. Ma, J.X. Liu, J.Q. Feng, C.S. Li, P.X. Zhang, Mater. Chem. Phys. 163, 587–593 (2015)CrossRefGoogle Scholar
  26. 26.
    X.J. Wu, Z.Z. Zhang, J.Y. Zhang, B.H. Li, Z.G. Ju, Y.M. Lu, B.S. Li, D.Z. Shen, J. Appl. Phys. 103, 113501 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Superconducting Materials Research CenterNorthwest Institute for Non-Ferrous Metal ResearchXi’anChina
  2. 2.Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations