Skip to main content
Log in

Sn doping effects on properties of ZnO thin films deposited by RF magnetron sputtering using a powder target

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, tin doped ZnO thin films (ZnO:Sn) at different contents (0–3 wt%) were deposited onto glass substrates by RF magnetron sputtering using a powder compacted target at room temperature. The effect of Sn concentration on the structural, optical and electrical properties of the ZnO:Sn thin films were investigated. The X-ray diffraction analysis shows that the pure ZnO thin film exhibits a strong intensity of the (002) peak indicating a preferential orientation along the c-axis. For Sn doped ZnO thin films, there is a change in the orientation from the (002) plane to the (101) one. The undoped ZnO thin films have transmittance 85% in the visible range and slightly increased for 0.5 wt% of Sn, while it get decreased with further increasing the Sn doping concentration. The optical band gap energy get increased with increasing the doping concentration. Moreover, the electrical conductivity and conduction mechanism are also studied by impedance spectroscopy in the frequency range of 1KHz–13 MHz at various temperatures (633–743 K). The AC conductivity in ZnO thin films increased with angular frequency. The frequency exponent S decreases with increasing temperature. Such behavior suggests that the correlated barrier hopping (CBH) model may be suitable to explain the conduction mechanism in ZnO thin films. The activation energy values calculated from angular frequency and DC conductivity are in good agreement confirming that the conduction mechanism is thermally activated by hopping between localized states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.B. Baxter, E.S. Aydil, Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)

    Article  Google Scholar 

  2. S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuators B 107, 379–386 (2005)

    Article  Google Scholar 

  3. T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda, Y. Suzuki, N. Otogawa, T. Mise, S. Wang, Y. Hoshino, Y. Nakayama, H. Tanoue, Y. Makita, Thin Solid Films 476, 30–34 (2005)

    Article  Google Scholar 

  4. F. Ye, X. Cai, F. Dai, D. Zhang, P. Fan, L. Liu, Physica B 407, 64–67 (2012)

    Article  Google Scholar 

  5. A. Iqbal, A. Mahmood, T. Muhammad Khan, E. Ahmed, Prog. Nat. Sci. 23(1), 64–69 (2013)

    Article  Google Scholar 

  6. V. Ganesh, I.S. Yahia, S. AlFaify, M. Shkir, J. Phys. Chem. Solid 100, 115–125 (2017)

    Article  Google Scholar 

  7. S. Ameen, M.S. Akhtar, H.-K. Seo, Y.S. Kim, S.H. Shim, Chem. Eng. J. 187, 351–356 (2012)

    Article  Google Scholar 

  8. P. Chrysicopoulou, D. Davazoglou, C. Trapalis, G. Kordas, Thin Solid Films 323, 188 (1998)

    Article  Google Scholar 

  9. M. Takeuchi, T. Itoh, H. Nagasaka, Thin Solid Films 51, 83 (1978)

    Article  Google Scholar 

  10. K.S. Yeung, Y.W. Lam, Thin Solid Films 109, 169 (1983)

    Article  Google Scholar 

  11. C. Manoharan, G. Pavithra, S. Dhanapandian, P. Dhamodharan, Spectrochim. Acta A 149, 793–799 (2015)

    Article  Google Scholar 

  12. A. Mhamdi, B. Ouni, A. Amlouk, K. Boubaker, M. Amlouk, J. Alloys Compd. 582, 810–822 (2014)

    Article  Google Scholar 

  13. B.E. Warren, X-ray Diffraction. (Dover Publications, New York, 1990)

    Google Scholar 

  14. O.S. Heavens, Optical Properties of Thin Solid Films. (Butterworths, London, 1950)

    Google Scholar 

  15. R. Swanepoel, J. Phys. E 16, 1214 (1983)

    Article  Google Scholar 

  16. S. Lemlikchi, S. Abdelli-Messaci, S. Lafane, T. Kerdja, A. Guittoum, M. Saad, Appl. Surf. Sci. 256, 5650–5655 (2010)

    Article  Google Scholar 

  17. T.S. Moss, Proc. Phys. Soc. B 67, 775–782 (1954)

    Article  Google Scholar 

  18. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. 19, 704 (2008)

    Google Scholar 

  19. R.T. Chen, D. Robinson, Appl. Phys. Lett. 60, 1541 (1992)

    Article  Google Scholar 

  20. N. Chahmal, T. Souier, A. Mokri, M. Bououdina, M.S. Aida, M. Ghers, J. Alloys Compd. 593, 148–153 (2014)

    Article  Google Scholar 

  21. T. Nagata, T. Shimura, A. Ashida, N. Fujimura, TaichiroIto. J. Cryst. Growth 237–239, 533–537 (2002)

    Article  Google Scholar 

  22. B. Khalfallah, F. Chaabouni, G. Schmerber, A. Dinia, M. Abaab, J. Mater. Sci. (2016). doi: 10.1007/s10854-016-5494-1

    Google Scholar 

  23. P.N. Butcher, P.L. Morys, J. Phys. C 6, 2147 (1973)

    Article  Google Scholar 

  24. L.J. Meng, Y.M. Adritsck, M.P. Dos Santos, Vacuum 45, 19 (1994)

    Article  Google Scholar 

  25. A. Ghosh, Phys. Rev. B 42, 5665–5676 (1990)

    Article  Google Scholar 

  26. J. Han, M. Shen, W. Cao, Appl. Phys. Lett. 82, 67 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Andolsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andolsi, Y., Chaabouni, F. & Abaab, M. Sn doping effects on properties of ZnO thin films deposited by RF magnetron sputtering using a powder target. J Mater Sci: Mater Electron 28, 8347–8358 (2017). https://doi.org/10.1007/s10854-017-6551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6551-0

Keywords

Navigation