Skip to main content
Log in

Effect of Co cations and oxygen vacancy on optical and magnetic properties of SrTi1−xCoxO3 nanoparticles prepared by the hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SrTi1−xCoxO3 (x = 0, 0.05, 0.10 and 0.15) nanoparticles were synthesized by the hydrothermal method. Optical and magnetic properties based on Co cations and oxygen vacancy were studied in annealed samples. Phase and structure of all samples studied by X-ray diffraction results reveal a crystal of perovskite type with the formation of impurity phases of SrCO3 and Co3O4 in as-prepared and annealed samples of x = 0.15. Images of annealed samples obtained by scanning electron microscope and transmission electron microscope reveal cubic-like nanoparticles with the increase of average particle size from 103.85 ± 1.15 to 113.14 ± 2.27 nm due to the increase of Co content. In addition, the determined optical band gaps of annealed samples from the obtained ultraviolet–visible spectra are found to decrease from 3.148 to 2.417 eV. X-ray photoelectron spectroscopy results of annealed samples with x = 0.05 and 0.10 indicate the increase of oxygen vacancy (Vo) with increasing Co content and the existence of only Co2+ cation in a sample of x = 0.05 and both of Co2+ and Co3+ cations in a sample of x = 0.10. XANES results of annealed samples confirm the oxidation state 2 + and 3 + of Co cations. Magnetization (M) measurements using vibrating sample magnetometer reveal paramagnetic behavior in as-prepared samples and ferromagnetic behavior in annealed samples with saturation magnetization increases from 0.48 to 3.13 emu/g, owing to the increase of Co content. F-center exchange mechanism due to Co2+–Vo–Co2+ and Co3+–Vo–Co3+ couplings are proposed for the ferromagnetism. Temperature dependence of magnetization for annealed SrTi0.90Co0.10O3 sample measured in zero field-cooling and field-cooling modes indicate a Curie temperature above 280 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Zhang, H.-P. Li, W. Pan, J. Mater. Sci. 47, 8216 (2012)

    Article  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science. 294, 1488 (2001)

  3. Y. Köseo˘glu, J. Supercond. Nov. Magn. 26, 485 (2013)

    Article  Google Scholar 

  4. M. Cardona, Phys. Rev. 140, A651 (1965)

    Article  Google Scholar 

  5. L. Bi, H.-S. Kim, G.F. Dionne, C.A. Ross, New J. Phys. 12, 043044 (2010)

    Article  Google Scholar 

  6. M. Ashokkumar, S. Muthukumaran, J. Magn. Magn. Mater. 374, 61 (2015)

    Article  Google Scholar 

  7. A.K. Pradhan, D. Hunter, J.B. Dadson, T.M. Williams, K. Zhang, K. Lord, B. Lasley, R.R. Rakhimov, Appl. Phys. Lett. 86, 222503 (2005)

    Article  Google Scholar 

  8. P.T. Qiao, Z.H. Zhao, Y.G. Zhao, X.P. Zhang, W.Y. Zhang, S.B. Ogale, S.R. Shinde, T. Venkatesan, S.E. Lofland, C. Lanci, Thin Solid Films 468, 8 (2004)

    Article  Google Scholar 

  9. G. Herranz, M. Basletic, M. Bibes, R. Ranchal, A. Hamzic, E. Tafra, K. Bouzehouane, E. Jacquet, J.P. Contour, A. Barthélémy, A. Fert, Phys. Rev. B 73, 064403 (2006)

    Article  Google Scholar 

  10. G. Herranz, R. Ranchal, M. Bibes, H. Jaffr`es, E. Jacquet, J.-L. Maurice, K. Bouzehouane, F. Wyczisk, E. Tafra, M. Basletic, A. Hamzic, C. Colliex, J.-P. Contour, A. Barth´el´emy, A. Fert, Phys. Rev. Lett. 96, 027207 (2006)

    Article  Google Scholar 

  11. S. Maensiri, K. Wongsaprom, E. Swatsitang, J. Appl. Phys. 102, 076110 (2007)

    Article  Google Scholar 

  12. K. Wongsaprom, E. Swatsitang, S. Srijarania, S. Maensiri, S. Seraphin, Appl. Phys. Lett. 90, 162506 (2007)

    Article  Google Scholar 

  13. E. Swatsitang, S. Hunpratub, S. Maensiri, Microelectron. Eng. 108, 209 (2013)

    Article  Google Scholar 

  14. T. Putjuso, S. Maensiri, S. Hunpratub, E. Swatdisitang, Mater. Res. Bull. 47, 2270 (2012)

    Article  Google Scholar 

  15. A. Karaphun, S. Hunpratub, E. Swatsitang, Microelectron. Eng. 126, 42 (2014)

    Article  Google Scholar 

  16. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001) pp. 388

    Google Scholar 

  17. S. Fuentes, R.A. Zarate, E. Chavez, P. Munoz, D. Diaz-Droguett, P. Leyton, J. Mater. Sci. 45, 1448 (2010)

    Article  Google Scholar 

  18. H.L. Cai, X.S. Wu, J. Gao, Chem. Phys. Lett. 467, 313 (2009)

    Article  Google Scholar 

  19. Z. Wang, M. Cao, Z. Yao, Q. Zhang, Z. Song, W. Hu, Q. Xu, H. Hao, H. Liu Z. Yu, J. Eur. Ceram. Soc. 34, 1755 (2014)

    Article  Google Scholar 

  20. S. Fuentes, E. Chavez, L. Padilla-Campos, D.E. Diaz-Droguett, Ceram. Int. 39, 8823 (2013)

    Article  Google Scholar 

  21. D. Yao, X. Zhou, S. Ge. Appl. Surf. Sci. 257, 9233 (2011)

    Article  Google Scholar 

  22. M.C. Onbaşlı, T. Goto, A. Tang, A. Pan, E. Battal, A.K. Okyay, G.F. Dionne, C.A. Ross, Opt. Express 23, 13401 (2015)

    Google Scholar 

  23. M. Miyauchi, M. Takashio, H. Tobimatsu, Langmuir 20, 232 (2004)

    Article  Google Scholar 

  24. L. Wannasen, E. Swatsitang, Microelectron. Eng. 146, 92 (2015)

    Article  Google Scholar 

  25. M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, Mater. Sci. 26, 6352 (2015)

    Google Scholar 

  26. C. Decorse-Pascanut, J. Berthon, L. Pinsard-Gaudart, N. Dragoe, P. Berthet, J. Magn. Magn. Mater. 321, 3526 (2009)

    Article  Google Scholar 

  27. S. Ramachandran, A. Tiwari, A. Tiwari, J. Narayan, S. Ramachandran, Appl. Phys. Lett. 84, 5255 (2004)

    Article  Google Scholar 

  28. X. Zhou, J. Xue, D. Zhou, Z. Wang, Y. Bai, X. Wu, X. Liu, J. Meng, ACS. Appl. Mater. Int. 2, 2689 (2010)

    Article  Google Scholar 

  29. M. Veverka, P. Veverka, Z. Jira´k, O. Kaman, K. Knı´zˇek, M. Marysˇko, E. Pollert, K. Za´veˇta, J. Magn, Magn. Mater. 322, 2386 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. The Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand are also acknowledged for co-providing of fund, including XRD, VSM, UV–Vis, SEM and TEM measurements. The Synchrotron Light Research Institute (SLRI), Nakhon ratchasima, Thailand is acknowledged for XAS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaphan Swatsitang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaphun, A., Hunpratub, S., Phokha, S. et al. Effect of Co cations and oxygen vacancy on optical and magnetic properties of SrTi1−xCoxO3 nanoparticles prepared by the hydrothermal method. J Mater Sci: Mater Electron 28, 8294–8303 (2017). https://doi.org/10.1007/s10854-017-6543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6543-0

Keywords

Navigation