Skip to main content

Advertisement

Log in

Near-infrared quantum cutting and energy transfer mechanism in Lu2O3: Tm3+/Yb3+ phosphor for high-efficiency photovoltaics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Near-infrared downconversion phenomenon has been demonstrated in Lu2O3: Tm3+/Yb3+ phosphor upon direct excitation of Tm3+:1G4 level at 463 nm. The efficient energy transfer from Tm3+: 1G4 → Yb: 2F5/2 has been elucidated by the excitation spectra, the visible and NIR spectra as well as the decay curves of Tm: 1G4 state. The mechanism of downconversion in Lu2O3:Tm3+/Yb3+ has been discussed in detail. According to analysis of the dependence of the initial transfer rate over Yb3+ ion concentration, it could be included that energy transfer (ET) from Tm3+ to Yb3+ is a single-step ET process instead of a cooperative one. By varying the Yb3+ concentrations, we obtain the Lu2O3: 0.2%Tm3+/30%Yb3+ sample with theoretical quantum efficiency as high as 148.2%. Because the excited state of Yb3+ just above the band edge of crystalline silicon, it suggested that Lu2O3: Tm3+/Yb3+ sample will be beneficial to improve the conversion efficiency of c-Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.E. Habas, HAS Platt, MFAM van Hest et al., Low-cost inorganic solar cells: from ink to printed device. Chem. Rev. 110(11), 6571–6594 (2010)

    Article  Google Scholar 

  2. K. Lee, J. Lee, B.A. Mazor et al., Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators. Light 4(5), e288 (2015)

    Article  Google Scholar 

  3. K. Yu, J. Chen, Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 4(1), 1 (2008)

    Article  Google Scholar 

  4. B.M. van der Ende, L. Aarts, A. Meijerink, Near-infrared quantum cutting for photovoltaics. Adv. Mater. 21(30), 3073–3077 (2009)

    Article  Google Scholar 

  5. J. Peet, J.Y. Kim, N.E. Coates et al., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6(7), 497–500 (2007)

    Article  Google Scholar 

  6. M. Al-Ibrahim, O. Ambacher, S. Sensfuss et al., Effects of solvent and annealing on the improved performance of solar cells based on poly (3-hexylthiophene): fullerene. Appl. Phys. Lett. 86(20), 201120 (2005)

    Article  Google Scholar 

  7. X. Huang, S. Han, W. Huang et al., Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)

    Article  Google Scholar 

  8. E.D. Kosten, J.H. Atwater, J. Parsons et al., Highly efficient GaAs solar cells by limiting light emission angle. Light. Sci. Appl. 2(1), e45 (2013)

    Google Scholar 

  9. J.C. Arvesen, R.N. Griffin, B.D. Pearson, Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl. Optics 8(11), 2215–2232 (1969)

    Article  Google Scholar 

  10. B.S. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. cells 90(15), 2329–2337 (2006)

    Article  Google Scholar 

  11. B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009)

    Article  Google Scholar 

  12. C. Strümpel, M. McCann, G. Beaucarne et al., Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007)

    Article  Google Scholar 

  13. Q.Y. Zhang, X.Y. Huang, Recent progress in quantum cutting phosphors. Prog. Mater. Sci. 55(5), 353–427 (2010)

    Article  Google Scholar 

  14. B.S. Richards, Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Solar cells 90(9), 1189–1207 (2006)

    Article  Google Scholar 

  15. D.C. Yu, R. Martín-Rodríguez, Q.Y. Zhang et al., Multi-photon quantum cutting in Gd2O2S: Tm3+ to enhance the photo-response of solar cells. Light. Sci. Appl. 4(10), e344 (2015)

    Google Scholar 

  16. L. Aarts, B.M. Van der Ende, A. Meijerink, Downconversion for solar cells in NaYF4: Er, Yb. J. Appl. Phys. 106(2), 023522 (2009)

    Article  Google Scholar 

  17. G. Xiang, J. Zhang, Z. Hao et al., The energy transfer mechanism in Pr3+ and Yb3+ codoped β-NaLuF4 nanocrystals. Phys. Chem. Chem. Phys. 16(20), 9289–9293 (2014)

    Article  Google Scholar 

  18. J. Li, L. Chen, Z. Hao et al., Efficient near-infrared downconversion and energy transfer mechanism of Ce3+/Yb3+ codoped calcium scandate phosphor. Inorg. Chem. 54(10), 4806–4810 (2015)

    Article  Google Scholar 

  19. K. Deng, T. Gong, L. Hu et al., Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics. Opt. Express 19(3), 1749–1754 (2011)

    Article  Google Scholar 

  20. H. Lin, S. Zhou, X. Hou et al., Down-conversion from blue to near infrared in Tm–Yb codoped YO transparent ceramics. IEEE Photon. Technol. Lett. 22(12), 866–868 (2010)

    Article  Google Scholar 

  21. P. Vergeer, TJH Vlugt, MHF Kox et al., Quantum cutting by cooperative energy transfer in YbxY1– x PO4: Tb3+. Phys. Rev. B 71(1), 014119 (2005)

    Article  Google Scholar 

  22. J. Yang, C. Zhang, C. Peng et al., Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3: Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. Chemistry 15(18), 4649–4655 (2009)

    Article  Google Scholar 

  23. A. Ulas, K.K. Kuo, C. Gotzmer, Ignition and combustion of boron particles in fluorine-containing environments. Combust. Flame 127(1), 1935–1957 (2001)

    Article  Google Scholar 

  24. R. Peters, C. Kränkel, K. Petermann et al., Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb: Lu2O3. J. Cryst. Growth 310(7), 1934–1938 (2008)

    Article  Google Scholar 

  25. U. Griebner, V. Petrov, K. Petermann et al., Passively mode-locked Yb: Lu2O3 laser. Opt. Express 12(14), 3125–3130 (2004)

    Article  Google Scholar 

  26. A.I. Zagumennyi, G.B. Lutts, P.A. Popov et al., The thermal conductivity of YAG and YSAG laser crystals. Laser Phys. 3(5), 1064–1065 (1993)

    Google Scholar 

  27. L. An, J. Zhang, M. Liu et al., Preparation and upconversion properties of Yb3+, Ho3+: Lu2O3 nanocrystalline powders. J. Am. Ceram. Soc. 88(4), 1010–1012 (2005)

    Article  Google Scholar 

  28. Li Li, Xiantao Wei, C. Yonghu et al., Energy transfer in Tb3+, Yb3+ codoped Lu2O3 near-infrared downconversion nanophosphors. J. Rare Earths 30(3), 197–201 (2012)

    Article  Google Scholar 

  29. J. Li, J. Zhang, Z. Hao et al., Intense upconversion luminescence and origin study in Tm3+/Yb3+ codoped calcium scandate. Appl. Phys. Lett. 101(12), 121905 (2012)

    Article  Google Scholar 

  30. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  Google Scholar 

  31. J.M. Meijer, L. Aarts, B.M. van der Ende et al., Downconversion for solar cells in YF3: Nd3+, Yb3+. Phys. Rev. B 81(3), 035107 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701003, 2016YFB0400605), National Natural Science Foundation of China (Grant No. 61275055, 11274007, 51402284 and 11604330), Natural Science Foundation of Jilin province (Grant No. 20140101169JC, 20150520022JH and 20160520171JH), and the prior sci-tech program of innovation and entrepreneurship of oversea Chinese talent of Jilin province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, J., Hao, Z. et al. Near-infrared quantum cutting and energy transfer mechanism in Lu2O3: Tm3+/Yb3+ phosphor for high-efficiency photovoltaics. J Mater Sci: Mater Electron 28, 8017–8022 (2017). https://doi.org/10.1007/s10854-017-6506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6506-5

Keywords

Navigation