Skip to main content

Interpretation of barrier height inhomogeneities in Au/In2S3/SnO2/(In-Ga) structures at low temperatures

Abstract

The structure of Au/In2S3/SnO2/(In-Ga) have been examined by current–voltage (I-V) data between 125 and 300 K temperature levels at forward biases. The zero-bias barrier height (Φ Bo ) and the ideality factor (n) obtained from the linear part of lnI-V characteristics were achieved as cogently dependent to temperature. The Φ Bo values increase with the increment at temperature where as those of n decrease. The obtained positive temperature coefficient (α = 2.1 × 103 eV/K) of Φ Bo was not compatible with the In2S3 band gap’s negative temperature coefficient or the ideal diode’s barrier height (BH) behavior. Hence, the plot of Φ Bo vs. q/2kT have figured to attain an evidence of a Gaussian distribution (GD) of the barrier heights (BHs). The figure for Φ Bo vs. q/2kT was used to obtain standard deviation (σ o ) and mean values of BH \(\left( {{{\bar{\Phi }}}_{Bo}} \right)\) as 0.88 eV and 0.116 V, respectively. In this way, we modified Richardson [ln(I o /T 2) − q 2σo 2/2k 2 T 2] vs. q/kT plot, and the values of \({{\bar{\Phi }}_{Bo}}\) and effective Richardson constant (A*) were extracted as 0.87 eV and 10.25 A/cm2 K2 from this plot, respectively. It was educed that the I-V data which depends on temperature subjected to the thermionic emission (TE) theory can be set out in full with single GD of the BHs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. D. Abou-Ras, G. Kostroz, A. Strohm, H.W. Schock, A.N. Tiwari, J. Appl. Phys. 98, 123512 (2005)

    Article  Google Scholar 

  2. D.K. Kim, J. Mater. Sci. Mater. Electron 19, 471–475 (2008)

    Article  Google Scholar 

  3. R. Bayón, C. Maffiotte, J. Herrero, Thin Solid Films 353, 100 (1999)

    Article  Google Scholar 

  4. M. Caglar, S. Ilıcan, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. Mater. Electron 19, 704–708 (2008)

    Article  Google Scholar 

  5. I.V. Bodnar, V.A. Polubok, V.F. Gremenok, V.Y. Rud, Y.V. Rud, Semiconductors 41, 47 (2007)

    Article  Google Scholar 

  6. A. Datta, G. Sinha, S.K. Panda, A. Patra, Cryst. Growth Des. 9, 1 (2009)

    Article  Google Scholar 

  7. F.E. Cimilli, H. Efeoğlu, M. Sağlam, A. Türüt, J. Mater. Sci. Mater. Electron 20, 105–112 (2009)

    Article  Google Scholar 

  8. E.H. Rhoderick, in Metal-Semiconductor Contacts. (Oxford University Press, Oxford, 1978)

    Google Scholar 

  9. H.C. Card, E.H. Rhoderick, J. Phys. D Appl. Phys 4, 1589 (1971)

    Article  Google Scholar 

  10. S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, J. Mater. Sci. Mater. Electron 27, 8340–8347 (2016)

    Article  Google Scholar 

  11. S. Alialy, A. Kaya, E. Marıl, S. Altındal, I. Uslu, Philos. Phenomenol. 95, 1448–1461 (2015)

    Google Scholar 

  12. H. Tecimer, S. Aksu, H. Uslu, Y. Atasoy, E. Bacaksız, Ş. Altındal, Sens. Actuators A 185, 73 (2012)

    Article  Google Scholar 

  13. V.R. Reddy, Thin Solid Films 556, 300 (2014)

    Article  Google Scholar 

  14. E. Marıl, A. Kaya, H.G. Çetinkaya, S. Koçyiğit, Ş. Altındal, Mater. Sci. Semicond. Proc. 39, 332 (2015)

    Article  Google Scholar 

  15. B.P. Lakshmi, M.S.P. Reddy, A.A. Kumar, V.R. Reddy, Curr. App. Phys. 12, 765 (2012)

    Article  Google Scholar 

  16. A. Kumar, S. Vinayak, R. Singh, Curr. App. Phys. 13, 1137 (2013)

    Article  Google Scholar 

  17. E. Marıl, A. Kaya, S. Koçyiğit, S. Altındal, Mater. Sci. Semicond. Proc. 31, 256 (2015)

    Article  Google Scholar 

  18. Z.J. Horvarth, Solid State Electron, 39, 176 (1996)

    Article  Google Scholar 

  19. A. Sarıyıldız, Ö. Vural, M. Evecen, Ş. Altındal, J. Mater. Sci. Mater. Electron 25, 4391–4397 (2014)

    Article  Google Scholar 

  20. R.F. Schmitsdrof, T.U. Kampen, W. Mönch, J. Vac. Sci. Technol. B 15, 1221 (1997)

    Article  Google Scholar 

  21. R.T. Tung, Mat. Sci. Eng. R 35, 1 (2001)

    Article  Google Scholar 

  22. W. Mönch, J. Vac. Sci. Technol. B 17, 1867 (1997)

    Article  Google Scholar 

  23. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, Solid State Electron 29, 633 (1986)

    Article  Google Scholar 

  24. J.H. Werner, H.H. Güttler, J. Appl. Phys. 69, 1522 (1991)

    Article  Google Scholar 

  25. M.K. Hudait, S.B. Krupanidhi, Mat. Sci. Eng. B 87, 141 (2001)

    Article  Google Scholar 

  26. Ş. Karataş, Ş. Altındal, A. Türüt, A. Özmen, Appl. Surf. Sci. 217, 250 (2003)

    Article  Google Scholar 

  27. H. Tecimer, A. Türüt, H. Uslu, Ş. Altındal, İ. Uslu, Sens. Act. A 199, 194 (2013)

    Article  Google Scholar 

  28. A. Tataroğlu, Ş. Altındal, J. Alloys Compd. 484, 405 (2009)

    Article  Google Scholar 

  29. A. Kaya, S. Demirezen, H. Tecimer, Ş. Altındal, Adv. Polym. Tech. 33, 21442 (2014)

    Article  Google Scholar 

  30. J.P. Sulvian, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)

    Article  Google Scholar 

  31. T.T. John, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Appl. Surf. Sci. 252, 1360–1367 (2005)

    Article  Google Scholar 

  32. E. Bacaksiz, S. Yılmaz, M. Parlak, A. Varilci, M. Altunbaş, J. Alloys Compd. 478, 367 (2009)

    Article  Google Scholar 

  33. M. Calixto-Rodrigueza, A. Tiburcio-Silverb, A. Ortizc, A. Sanchez-Juareza, Thin Solid Films 480–481, 133 (2005)

    Article  Google Scholar 

  34. B.D. Cullity, in Elements of X-Ray Diffraction, (Addison-Wesley Publishing Company, Inc, London, 1978)

    Google Scholar 

  35. T.T. John, S. Bini, Y. Kashiwaba, T. Abe, Y. Yasuhiro, C.S. Karthaand, K.P. Vijayakumar, Semicond. Sci. Technol. 18, 491 (2003)

    Article  Google Scholar 

  36. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, Ş. Altındal, İ. Uslu, Composites Part B 98, 260–268 (2016)

    Article  Google Scholar 

  37. Z.P. Ai, Opt. Mater. 24, 589 (2003)

    Article  Google Scholar 

  38. C.J. Panchal, M.S. Desai, V.A. Kheraj, K.J. Pateland, N. Padha, Semicond. Sci. Technol. 23, 015003 (2008)

    Article  Google Scholar 

  39. S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, Ş. Altındal, J. Mater. Sci. Mater. Electron (2016). doi:10.1007/s10854-016-6147-0

    Google Scholar 

  40. K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, Ş. Altındal, J. Mater. Sci. Mater. Electron (2016). doi:10.1007/s10854-016-6011-2

    Google Scholar 

  41. S. Altındal, J. Mater. Electron. Dev. 1, 42–47 (2015)

    Google Scholar 

  42. Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altındal, Appl. Phys. A 122, 1032 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tecimer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tecimer, H., Altındal, Ş., Aksu, S. et al. Interpretation of barrier height inhomogeneities in Au/In2S3/SnO2/(In-Ga) structures at low temperatures. J Mater Sci: Mater Electron 28, 7501–7508 (2017). https://doi.org/10.1007/s10854-017-6440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6440-6

Keywords

  • Barrier Height
  • Ideality Factor
  • Forward Bias
  • Schottky Barrier Height
  • Positive Temperature Coefficient