Role of growth conditions on optical and electrical properties of fiber structured Zn0.90Cd0.1O thin films

Abstract

Fiber structured Zn0.90Cd0.1O films were obtained on glass substrate using zinc acetate and cadmium acetate solution through chemical spray pyrolysis method. All the deposited films are polycrystalline with hexagonal wurtzite structure. The average crystalline size of the deposited films were estimated through intensity of diffraction peak corresponding (101) plane, which is observed to increase with increase substrate temperature. The films deposited at 673 and 723 K have fibrous structure irrespective of the precursor concentration. The presence of Cd in the deposited films was confirmed by EDAX. The high transparency around 90% in visible region was observed for the sample deposited at 723 K using 0.0125 M concentration. It is seen that the optical energy band gap varies from 2.85 to 3.05 eV as the deposition temperature is changed from 673 to 723 K. The film deposited using 0.05 M concentration had low Urbach energy values compared to other molar concentrations confirming the minimization of defect states in these samples. With increasing deposition temperature the near band edge peak of photoluminescence spectrum shifted towards shorter wavelengths and in the same spectrum the weak green emission may be due to presence of singly ionized oxygen ion. The estimated activation energy of the deposited films was observed to decrease with increasing temperature and precursor concentration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    K.T.R. Reddy, G.M. Shanthini, D. Johnston, R.W. Miles, Highly transparent and conducting CdO films grown by chemical spray pyrolysis. Thin Solid Films 427, 397–400 (2003)

    Article  Google Scholar 

  2. 2.

    R. Ferro, J.A. Rodriguez, Influence of F-doping on the transmittance and electron affinity of CdO thin films suitable for solar cells technology. Sol. Energy Mater. Sol. Cells 64, 363 (2000)

    Article  Google Scholar 

  3. 3.

    C.H. Champness, Z. Xu, Effect of CdO interlayer on electrical characteristics in Se single bond Bi diodes. Appl. Surf. Sci. 123, 485–489 (1998)

    Article  Google Scholar 

  4. 4.

    R.A. Ismail, O.A. Abdulrazaq, A new route for fabricating CdO/c-Si hetero-junction solar cells, Sol. Energy Mater. Sol. Cells 91, 903–907 (2007)

    Article  Google Scholar 

  5. 5.

    S.Y. Lee, Y. Li, J.S. Lee, J.K. Lee, M. Nastasi, S.A. Crooker, Q.X. Jia, H.S. Kang, J.S. Kang, Effects of chemical composition on the optical properties of Zn1−xCdxO thin films. Appl. Phys. Lett. 85, 218 (2004)

    Article  Google Scholar 

  6. 6.

    A.D. Acharya, S. Moghe, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, D.M. Phas, V. Ganesan, Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route. Thin Solid Films 525, 49–55 (2012)

    Article  Google Scholar 

  7. 7.

    T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Band gap engineering based on MgxZn1–xO and CdyZn1–yO ternary alloy films. Appl. Phys. Lett. 78, 1237 (2001)

    Article  Google Scholar 

  8. 8.

    S. Sadofev, S. Kalusniak, J. Puls, P. Schafer, S. Blumstengel, F. Henneberger, Visible-wavelength laser action of ZnCdO/(Zn, Mg)O multiple quantum well structures. Appl. Phys. Lett. 91, 231103 (2007)

    Article  Google Scholar 

  9. 9.

    S. Sadofev, P. Schafer, Y.H. Fan, S. Blumstengel, F. Henneberger, D. Schulz, D. Klimm, Radical-source molecular beam epitaxy of ZnMgO and ZnCdO alloys on ZnO substrates. Appl. Phys. Lett. 91, 201923 (2007)

    Article  Google Scholar 

  10. 10.

    F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, Stokes shift, blue shift and red shift of ZnO-based thin films deposited by pulsed-laser deposition. J. Cryst. Growth 291, 328–333 (2006)

    Article  Google Scholar 

  11. 11.

    A.G.S. Kumar, L. Obulapathi, T. Sofi Sarmash, D.J. Rani, M. Maddaiah, T. Subba Rao, K. Asokan, Structural, electrical and optical properties of Cd doped ZnO thin films by reactive dc magnetron sputtering. Miner. Metals Mater. Soc. 31, 1344–1345 (2015)

    Google Scholar 

  12. 12.

    G. Li, X. Zhu, X. Tang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S. Dai, Doping and annealing effects on ZnO:Cd thin films by sol–gel method. J. Alloys Compd. 509, 4816–4823 (2011)

    Article  Google Scholar 

  13. 13.

    R. Maity, K.K. Chattopadhyay, Synthesis and characterization of aluminum-doped CdO thin films by sol–gel process. Sol. Energy Mater. Sol. Cells 90, 597–606 (2006)

    Article  Google Scholar 

  14. 14.

    A.J. Varkey, A.F. Fort, Transparent conducting cadmium oxide thin films prepared by a solution growth technique. Thin Solid Films 239, 211–213 (1994)

    Article  Google Scholar 

  15. 15.

    Z. Zhao, D.L. Morel, C.S. Ferekides, Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition. Thin Solid Films 413, 203–211 (2002)

    Article  Google Scholar 

  16. 16.

    I. Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, A. Ievtushenko, V. Tkach, V. Lazorenko, I. Timofeeva, R. Yakimova, Microstructure and luminescence dynamics of ZnCdO films with high Cd content deposited on different substrates by DC magnetron sputtering method. Appl. Surf. Sci. 276, 550–557 (2013)

    Article  Google Scholar 

  17. 17.

    R. Henriquez, P. Grez, E. Munoz, H. Gomez, J.A. Badan, R.E. Marotti, E.A. Dalchiele, Optical properties of CdSe and CdO thin films electrochemically prepared. Thin Solid Films 518, 1774–1778 (2010)

    Article  Google Scholar 

  18. 18.

    N.L. Tarwal, A.V. Rajgure, A.I. Inamdar, R.S. Devan, I.Y. Kim, S.S. Suryavanshi, Y.R. Ma, J.H. Kim, P.S. Patil, Growth of multifunctional ZnO thin films by spray pyrolysis technique, Sens. Actuators A 199, 67–73 (2013)

    Article  Google Scholar 

  19. 19.

    J.L. Van Heerden, R. Swanepoel, XRD analysis of ZnO thin films prepared by spray pyrolysis. Thin Solid Films 299, 72–77 (1997)

    Article  Google Scholar 

  20. 20.

    B.D. Cullity, S.R. Stock, in Elements of X-ray Diffraction. (Prentice-Hall, Upper Saddle River, 2001)

    Google Scholar 

  21. 21.

    H. Fan, X. Jia, Selective detection of acetone and gasoline by temperature modulation in zinc oxide nanosheets sensors. Solid State Ionics 192, 688–692 (2011)

    Article  Google Scholar 

  22. 22.

    C. Ravichandran, J. Kumar, G. Srinivasan, C. Lennon, S. Sivananthan, Investigations on the structural and optical properties of band gap engineered Zn1–x(Cd, Mg)xO thin films deposited by sol–gel technique. J Mater. Sci. Mater. Electron 26, 5489–5494 (2015)

    Article  Google Scholar 

  23. 23.

    A. Singh, P. Kumar, Structural, morphological and optical properties of sol gel processed CdZnO nanostructured films: effect of precursor solvents. Int. Nano Lett. 3, 57 (2013)

    Article  Google Scholar 

  24. 24.

    R.A. Zargar, S. Chackrabarti, M Shahabuddin, J. Kumar, M. Arora, A.K. Hafiz, Novel composites of Zn1−xCdxO (x = 0, 0.05, 0.1) thick films for optoelectronic device application. J. Mater. Sci. Mater. Electron 26, 120027 (2015)

    Article  Google Scholar 

  25. 25.

    M.R. Islam, J. Podder, Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst. Res. Technol. 44, 286–292 (2009)

    Article  Google Scholar 

  26. 26.

    K. Hoggas, C. Nouveau, A. Djelloul, M. Bououdina, Structural, microstructural, and optical properties of Zn1–xMgxO thin films grown onto glass substrate by ultrasonic spray pyrolysis. Appl. Phys. A 120, 745–755 (2015)

    Article  Google Scholar 

  27. 27.

    B.K. Sonawane, V. Shelke, M.P. Bhole, D.S. Patil, Structural, optical and electrical properties of cadmium zinc oxide films for light emitting devices. J. Phys. Chem. Solids 72, 1442–1446 (2011)

    Article  Google Scholar 

  28. 28.

    E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  29. 29.

    D Mishra, K.C. Dubey, J. Sens. Transducers 105, 119 (2009)

    Google Scholar 

  30. 30.

    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  31. 31.

    A.A. Ziabari, F.E. Ghodsi, Optoelectronic studies of sol–gel derived nanostructured CdO–ZnO composite films. J. Alloys Compd. 509, 8748–8755 (2011)

    Article  Google Scholar 

  32. 32.

    R. Vinodkumar, K.J. Lethy, P.R. Arunkumar, R.R. Krishnan, N.V. Pillai, V.P.M. Pillai, R. Philip, Effect of cadmium oxide incorporation on the microstructural and optical properties of pulsed laser deposited nanostructured zinc oxide thin films. Mater. Chem. Phys. 121, 406–413 (2010)

    Article  Google Scholar 

  33. 33.

    S. Ilican, M. Caglar, Y. Caglar, Sn doping effects on the electro–optical properties of sol gel derived transparent ZnO films. Appl. Surf. Sci. 256, 7204–7210 (2010)

    Article  Google Scholar 

  34. 34.

    S. Akın, G. Karanfil, A. Gultekin, S. Sonmezoglu, Improvement of physical properties of CdO thin films by Au–Ag nanocluster cooping. J. Alloys Compd. 579, 272–278 (2013)

    Article  Google Scholar 

  35. 35.

    N.F. Mott, E.A. Davis, in Electronic Processes in Non-Crystalline Materials. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  36. 36.

    B. Huang, G. He, H. Yang, Effects of annealing on the crystal structures and blue emission properties of sputtered ZnO films. Phys. B 405, 4101–4104 (2010)

    Article  Google Scholar 

  37. 37.

    K. Vanheusden, W.L. Waren, C.H. Seager, D.R. Tallait, J.A. Voight, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)

    Article  Google Scholar 

  38. 38.

    A. Singh, D. Kumar, P.K. Khanna, B.C. Joshi, M. Kumar, Effect of post annealing temperature on structural and optical properties of ZnCdO thin films deposited by sol–gel method. Appl. Surf. Sci. 258, 1881–1887 (2011)

    Article  Google Scholar 

  39. 39.

    H.S. Kang, J.S. Kang, S.S. Pang, E.S. Shim, S.Y. Lee, Variation of light emitting properties of ZnO thin films depending on post-annealing temperature. Mater. Sci. Eng. B 102, 313–316 (2003)

    Article  Google Scholar 

  40. 40.

    A. Epstein, B.S. Wildi, Electrical properties of poly-copper phthalocyanine. J. Chem. Phys. 32, 324 (1960)

    Article  Google Scholar 

  41. 41.

    E. Bauer, M.H. Francombe, H. Sato, in Single Crystal Films, 1st edn. (Pergamon, London, 1964)

    Google Scholar 

  42. 42.

    M. Ajili, M. Castagne, N.K. Turki, Effect of precursor concentration on structural, morphological and opto-electric properties of ZnO thin films prepared by spray pyrolysis. Superlattice Microstruct. 53, 213–222 (2013)

    Article  Google Scholar 

  43. 43.

    R.V. Vidap, V.L. Mathe, G.S. Shahane, Structural, optical and gas sensing properties of spin coated nanocrystalline zinc oxide thin films. J. Mater. Sci. Mater. Electron 24, 3170–3174 (2013)

    Article  Google Scholar 

  44. 44.

    Q. Wang, Y. Wen, R. Chen, B. Shan, A hybrid functional study of the electronic and optical properties of tetragonal PbO-type phase of ZnO under pressure. J. Alloys Compd. 586, 611–615 (2014)

    Article  Google Scholar 

  45. 45.

    G.H. Lee, Y. Yamamoto, M. Kourogi, M. Ohtsu, Blue shift in room temperature photoluminescence from photo-chemical vapour deposited ZnO films. Thin Solid Films 386, 117–120 (2001)

    Article  Google Scholar 

  46. 46.

    T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. London B 67, 775 (1954)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (SJ) would like thank Manipal University for granting junior research fellowship and providing experimental facilities. Authors thank UGC-DAE Consortium for Scientific Research, Mumbai Center India for sanctioning research projects (UDCSR/MUM/AO/CRS-M-212/2015/511) and SERB, DST Govt. of India (SB/S2/CMP-017/2014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. V. Rajendra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joishy, S., Rajendra, B.V., Rao, A. et al. Role of growth conditions on optical and electrical properties of fiber structured Zn0.90Cd0.1O thin films. J Mater Sci: Mater Electron 28, 7489–7500 (2017). https://doi.org/10.1007/s10854-017-6439-z

Download citation

Keywords

  • Deposition Temperature
  • Spray Pyrolysis
  • Precursor Concentration
  • Urbach Energy
  • Spray Pyrolysis Technique