Skip to main content
Log in

Synthesis of ZnQ2, CaQ2, and CdQ2 for application in OLED: optical, thermal, and electrical characterizations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, zinc, calcium and cadmium based organometallic complexes were synthesized as fluorescent materials for the application in organic light-emitting diodes (OLEDs). The crystal structure of ZnQ2, CaQ2, and CdQ2 complexes was determined applying X-ray diffraction. The synthesized complexes were characterized using visible and ultraviolet (UV–Vis), Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), and photoluminescence (PL) spectroscopy analysis. The energy levels of Zn, Ca, and Cd complexes were determined by cyclic voltammetry measurements. Heat-treatment was carried out under nitrogen atmosphere at the temperature determined by thermo-gravimetric analysis. TGA results indicated that the complexes with initial decomposition temperatures more than 260 °C had high thermal stability. The ZnQ2 complex has also a maximum temperature in 527 °C with Mres= 55% which is the highest values among three complexes. Further structural elucidation was carried out using FT-IR in which the stretching frequencies of ZnQ2, CaQ2, and CdQ2 bonds were determined. The maximum green photoluminescence at 565, 523, and 544 nm were observed from ZnQ2, CaQ2, and CdQ2 powders, respectively. Comparing fluorescence data results showed that the intensity fluorescence of ZnQ2 and CdQ2 was reduced in comparison with the fluorescence of CaQ2. The optical, thermal and electrical properties of ZnQ2, CaQ2, and CdQ2 powders were evaluated for possible application in organic light emitting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Vivas-Reyes, F. Nunez-Zarur, E. Martınez, Electronic structure and reactivity analysis for a set of Zn-chelates with substituted 8-hydroxyquinoline ligands and their application in OLED. Org. Electron. 9, 625–634 (2008)

    Article  Google Scholar 

  2. R. Manju, N. Blanton, C.W Tang, W.C. Lenhart, S.C. Switalski, D.J. Giesen, B.J. Antalek, T.D. Pawlik, D.Y. Kondakov, N. Zumbulyadis, R.H. Young, Structural, thermal, and spectral characterization of the different crystalline forms of Alq3, tris(quinolin-8-olato) aluminum(III), an electroluminescent material in OLED technology. Polyhedron 28 835–843(2009)

    Article  Google Scholar 

  3. R. Ballardini, G. Varani, M. Teresa, F. Scandola, Phosphorescent 8-quinolinol metal chelates. Excited-state properties and redox behavior. Inorg. Chem. 25, 3858–3865 (1986)

    Article  Google Scholar 

  4. Y.L. Sui, B. Yan, Fabrication and photoluminescence of molecular hybrid films based on the complexes of 8-hydroxyquinoline with different metal ions via sol–gel process. Photobioch. Photobiop. A 182, 1–6 (2006)

    Article  Google Scholar 

  5. M. Colle, W. Brutting, Thermal, structural and photo physical properties of the organic semiconductor Alq3. Phys. Status Solidi A 201, 1095–1115 (2004)

    Article  Google Scholar 

  6. M. Brinkmann et al., Correlation between molecular Packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline) aluminum(III). Am. Chem. Soc. 122(21), 5147–5157 (2000)

    Article  Google Scholar 

  7. T. Tsuboi, Y. Torii, Selective synthesis of facial and meridional isomers of Alq3. Mol. Cryst. Liq. Cryst. 529(1), 42–52 (2010)

    Article  Google Scholar 

  8. Y.P. Kovtun, Y.O. Prostota, A.I. Tolmachev, Metallochromicmerocyanines of 8-hydroxyquinoline series. Dyes Pigments 58 (1), 83–91 (2003)

    Article  Google Scholar 

  9. M. Ghedini, M. La Deda, I. Aiello, A. Grisolia, Synthesis and photo physical characterization of soluble photo luminescent metal complexes with substituted 8-hydroxyquinolines. Synth. Met. 138, 189–192 (2003)

    Article  Google Scholar 

  10. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)

    Article  Google Scholar 

  11. C.H. Chen, J. Shi, Coord. Chem. Rev. 171, 161–174 (1998)

    Article  Google Scholar 

  12. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, Am. Chem. Soc. 122, 5147–5157 (2000)

    Article  Google Scholar 

  13. P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Chem. Mater. 16, 4556–4573 (2004)

    Article  Google Scholar 

  14. Q. Mei, N. Du, M. Lu, Synthesis and characterization of high molecular weight metaloquinolate containing polymers, Appl. Polym. Sci. 99, 1945–1952(2006)

    Article  Google Scholar 

  15. N. Du, R. Tian, J. Peng, M. Lu, Synthesis and photo-physical characterization of the free-radical copolymerization of metaloquinolate-pendant monomers with methyl methacrylate. Polym. Sci. Part A, 43, 397–406(2005)

    Article  Google Scholar 

  16. B. Stefan, B. Wolfgang, Dispersive electron transport in tris(8-Hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy. Phys. Rev. Lett. 89, 286601 (2002)

    Article  Google Scholar 

  17. European Patent Specification, Electroluminescent Quinolate, Bulletin/12 EP 1144543 B1 (2004)

  18. C.W. Tangand, S.A. VanSlyke, Organic electroluminescent diode. Appl. Phys. Lett. 51, 913–915 (1987)

    Article  Google Scholar 

  19. Y. Hamada, T. Sano, M. Fujita, Y. Nishio, Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn. J. Appl. Phys. 32, L514–L515 (1993)

    Article  Google Scholar 

  20. C.H. Cheng, S. Jianmin, Metal chelates as emitting materials for organic electroluminescence. Coord. Chem. Rev 171, 161–174 (1998)

    Article  Google Scholar 

  21. Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, S.M. Elahi, A. Boochani, Microstructure and micro morphology of ZnO thin films: case study on Al doping and annealing effects. Superlattic. Microst. 93, 109–121 (2016)

    Article  Google Scholar 

  22. L. Dejam, S.M. Elahi, H.H. Nazari, H. Elahi, S. Solaymani, A. Ghaderi, Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing. J Mater. Sci. 27, 685–696(2016)

    Google Scholar 

  23. Ş. Ţălu, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, Surface micro morphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electro catalysts. RSC Adv. 6, 27228–27234 (2016)

    Article  Google Scholar 

  24. X. Bing-she, H. Yu-ying, W. Hua, Z. He-feng, L. Xuguang, C. Ming-wei, The effects of crystal structure on optical absorption/ photoluminescence of bis (8-hydroxyquinoline)zinc. Solid State Commun. 136, 318–322 (2005)

    Article  Google Scholar 

  25. X. Wang, M. Shao and L. Liu, High photoluminescence and photo switch of bis(8-hydroxyquinoline) zinc nanoribbons. Synth. Metals 160, 718–721(2010).

    Article  Google Scholar 

  26. Z. X-Bao Chen, Gong, B-Chuan Zhou, X-Wei Hu, C-Jie Mao, J-Ming Song, H-Lin Niu, Sh-Yi Zhang, Synthesis of 8-hydroxyquinoline cadmium (Cdq2) nano-belts with enhanced electro generated chemi-luminescence properties. Mater. Lett. 75, 155–157 (2012)

    Article  Google Scholar 

  27. L.S. Sapochak, F.E. Benincasa, R.S. Schofield, J.L. Baker, K.K.C. Riccio, D. Fogarty, H. Kohlmann, K.F. Ferris, P.E. Burrows, Electroluminescent zinc(II) bis(8-hydroxyquinoline): Structural effects on electronic states and device performance. Am. Chem. Soc. 124, 6119–6125 (2002)

    Article  Google Scholar 

  28. T.A. Hopkins, K. Meerholz, S. Shaheen, M.L. Anderson, A. Schmidt, B. Kippelen, A.B. Padias, J.H.K. Hall, N. Peyghambarian, Armstrong, substituted aluminum and zinc quinolate with blue shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminescence characterization. Chem. Mater. 8, 344–351 (1996)

    Article  Google Scholar 

  29. M.M. El-Nahass, A.M. Farid, A.A. Atta, Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III)(Alq3) thermal evaporated thin films. Alloys Compd. 507, 112–119(2010)

    Article  Google Scholar 

  30. Y. Kai, M. Moraita, N. Yasuka, N. Kasai, The crystal and molecular structure of anhydrous zinc 8-quinolinolate complex, (Zn(C9H6NO)2)4. Bull. Chem. Soc. Jpn. 58, 1631–1635 (1985)

    Article  Google Scholar 

  31. J.P. Phillips, J.F. Deye, Infrared spectra of oxine chelates. Anal. Chim. Acta. 17, 231–233 (1957)

    Article  Google Scholar 

  32. T. Gavrilko, R. Fedorovich, G. Dovbeshko, A. Marchenko, A. Naumovets, V. Nechytaylo, G. Puchkovska, L. Viduta, J. Baran, H. Ratajczak, FTIR spectroscopic and STM studies of vacuum deposited aluminum (III) 8-hydroxyquinoline thin films. Mol. Struct. 704, 163–168 (2004)

    Article  Google Scholar 

  33. J.E. Tackett, D.T. Sawyer, Properties and infrared spectra in the potassium bromide region of 8-quinolinol and its metal chelates. Inorg. Chem. 3, 692–696 (1964)

    Article  Google Scholar 

  34. C. Engelter, G.E. Jackson, C.L. Knight, D.A. Thornton, Spectra-structure correlations from the infrared spectra of some transition metal complexes of 8-hydroxyquinoline. Mol. Struct. 213, 133–144 (1989)

    Article  Google Scholar 

  35. B. Marchon, L. Bokobza, G. Cote, Vibrational study of 8-quinolinol and 7-(4-ethyl-1-methyloctyl)-8-quinolinol (Kelex100), two representative members of an important chelating agent family. Spectrochim. Acta A 42, 537–542(1986)

    Article  Google Scholar 

  36. R.J. Magee, L. Gordon, The infrared spectra of chelate Compounds-I: a study of some metal chelate compounds of 8-hydroxyquinoline in the region 625 to 5000 cm–1. Talanta 10, 851–859 (1963)

    Article  Google Scholar 

  37. S. Atalay, H.I. Adiguzel, F. Atalay, Infrared absorption studyof Fe2O3–CaO–SiO2 glass ceramics. Mater. Sci. Eng. A 304, 796–799 (2001)

    Article  Google Scholar 

  38. W. Chen, Q. Peng, Y.D. Li, Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Cryst. Growth Des. 8, 564–567 (2008)

    Article  Google Scholar 

  39. H.C. Pan, H.Y. Lin, Q.M. Shen, J. Zhu, Cadmium(II) (8-hydroxyquinoline) chloride nanowires: synthesis, characterization and glucose-sensing application. Adv. Funct. Mater. 18, 3692–3698 (2008)

    Article  Google Scholar 

  40. X.H. Wang, M.W. Shao, L. Li, Photoconductivity of a bundle of bis-(8-hydroxyquinoline) cadmium nanoribbons. J. Mater. Sci. 22, 120–123 (2010)

    Google Scholar 

  41. X. Bingshe, W. Hua, H. Yuying, G. Zhixiang, Z. Hefeng, Preparation and performance of a new type of blue light-emitting materials-Alq3. J. Lumin. 122, 663–666 (2007)

    Google Scholar 

  42. M.A. Baldo, S.R. Forrest, Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201–085217 (2001)

    Article  Google Scholar 

  43. M. Braun, J. Gmeiner, M. Tzolov, M. Coelle, F.D. Meyer, W. Milius, H. Hillebrecht, O. Wendland, J.U. von Schűtz, W. Brűtting, A new crystalline phase of the electroluminescent material tris-(8-hydroxyquinoline) aluminum exhibiting blue shifted fluorescence. Chem. Phys. 114, 9623–9625 (2001)

    Google Scholar 

  44. Y.K. Han, S.U. Lee, Molecular orbital study on the ground and excited states of methyl substituted tris-(8-hydroxyquinoline) aluminum(III). Chem. Phys. Lett. 366, 9–16 (2002)

    Article  Google Scholar 

  45. W. Curioni, Andreoni, Computer simulations for organic light-emitting diodes. IBM J. Res. Dev. 45, 101–113 (2001)

    Article  Google Scholar 

  46. M. Colle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brutting, Preparation and characterization of blue-luminescent tris(8-hydroxyquinoline)-aluminum (Alq3). Adv. Funct. Mat. 13, 108–112 (2003)

    Article  Google Scholar 

  47. M.M. Levichkova, J.J. Assa, H. Fröb, K. Leo, Blue luminescent isolated Alq3 molecules in a solid-state matrix. Appl. Phys. Lett. 88, 201912–201915 (2006)

    Article  Google Scholar 

  48. M. Al-Ibrahim, H.K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, S. Sensfuss, The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells. Org. Electron. 6, 65–77 (2005)

    Article  Google Scholar 

  49. A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Electron transport materials for organic light-emitting diodes. Chem. Mater. 16(23), 4556–4573 (2004)

    Article  Google Scholar 

  50. B.W.D. Andrade, S. Datta, S.R. Forrest, P. Djurovich, E. Polikarpov, M.E. Thompson, Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org. Electron. 6, 11–20 (2005)

    Article  Google Scholar 

  51. M. Thelakkat, H.W. Schmidt, Synthesis and properties of Novel derivatives of 1, 3, 5-tris (diarylamino) benzenes for electroluminescent devices. Adv. Mater. 10, 219–223 (1998)

    Article  Google Scholar 

  52. F.S. Rodembusch, F.R. Brand, D.S. Corrêa, J.C. Pocos, M. Martinelli, V. Stefani, Transition metal complexes from 2-(2′-hydroxyphenyl) benzoxazole: a spectroscopic and thermogravimetric stability study. Mater. Chem. Phys 92, 389–393 (2005)

    Article  Google Scholar 

  53. J.L. Bredas, R. Silbey, D.S. Boudreux, R.R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105(22), 6555–6559 (1983)

    Article  Google Scholar 

  54. P.I. Djurovich, E.I. Mayo, S.R. Forrest, M.E. Thompson, Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org. Electron. 10, 515–520 (2009)

    Article  Google Scholar 

  55. Mohamed M. Ahmida and S. Holger Eichhorn, Measurement and prediction of electronic properties of discotictriphenylenes and phthalocyanines. ECS Trans. 25(26), 1–102010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahedi, Z., Jafari, M.R. & Zolanvari, A.A. Synthesis of ZnQ2, CaQ2, and CdQ2 for application in OLED: optical, thermal, and electrical characterizations. J Mater Sci: Mater Electron 28, 7313–7319 (2017). https://doi.org/10.1007/s10854-017-6417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6417-5

Keywords

Navigation