Synthesis of ZnQ2, CaQ2, and CdQ2 for application in OLED: optical, thermal, and electrical characterizations

  • Zahra Shahedi
  • Mohammad Reza Jafari
  • Abdol Ali Zolanvari
Article

Abstract

In this study, zinc, calcium and cadmium based organometallic complexes were synthesized as fluorescent materials for the application in organic light-emitting diodes (OLEDs). The crystal structure of ZnQ2, CaQ2, and CdQ2 complexes was determined applying X-ray diffraction. The synthesized complexes were characterized using visible and ultraviolet (UV–Vis), Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), and photoluminescence (PL) spectroscopy analysis. The energy levels of Zn, Ca, and Cd complexes were determined by cyclic voltammetry measurements. Heat-treatment was carried out under nitrogen atmosphere at the temperature determined by thermo-gravimetric analysis. TGA results indicated that the complexes with initial decomposition temperatures more than 260 °C had high thermal stability. The ZnQ2 complex has also a maximum temperature in 527 °C with Mres= 55% which is the highest values among three complexes. Further structural elucidation was carried out using FT-IR in which the stretching frequencies of ZnQ2, CaQ2, and CdQ2 bonds were determined. The maximum green photoluminescence at 565, 523, and 544 nm were observed from ZnQ2, CaQ2, and CdQ2 powders, respectively. Comparing fluorescence data results showed that the intensity fluorescence of ZnQ2 and CdQ2 was reduced in comparison with the fluorescence of CaQ2. The optical, thermal and electrical properties of ZnQ2, CaQ2, and CdQ2 powders were evaluated for possible application in organic light emitting devices.

References

  1. 1.
    R. Vivas-Reyes, F. Nunez-Zarur, E. Martınez, Electronic structure and reactivity analysis for a set of Zn-chelates with substituted 8-hydroxyquinoline ligands and their application in OLED. Org. Electron. 9, 625–634 (2008)CrossRefGoogle Scholar
  2. 2.
    R. Manju, N. Blanton, C.W Tang, W.C. Lenhart, S.C. Switalski, D.J. Giesen, B.J. Antalek, T.D. Pawlik, D.Y. Kondakov, N. Zumbulyadis, R.H. Young, Structural, thermal, and spectral characterization of the different crystalline forms of Alq3, tris(quinolin-8-olato) aluminum(III), an electroluminescent material in OLED technology. Polyhedron 28 835–843(2009)CrossRefGoogle Scholar
  3. 3.
    R. Ballardini, G. Varani, M. Teresa, F. Scandola, Phosphorescent 8-quinolinol metal chelates. Excited-state properties and redox behavior. Inorg. Chem. 25, 3858–3865 (1986)CrossRefGoogle Scholar
  4. 4.
    Y.L. Sui, B. Yan, Fabrication and photoluminescence of molecular hybrid films based on the complexes of 8-hydroxyquinoline with different metal ions via sol–gel process. Photobioch. Photobiop. A 182, 1–6 (2006)CrossRefGoogle Scholar
  5. 5.
    M. Colle, W. Brutting, Thermal, structural and photo physical properties of the organic semiconductor Alq3. Phys. Status Solidi A 201, 1095–1115 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Brinkmann et al., Correlation between molecular Packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline) aluminum(III). Am. Chem. Soc. 122(21), 5147–5157 (2000)CrossRefGoogle Scholar
  7. 7.
    T. Tsuboi, Y. Torii, Selective synthesis of facial and meridional isomers of Alq3. Mol. Cryst. Liq. Cryst. 529(1), 42–52 (2010)CrossRefGoogle Scholar
  8. 8.
    Y.P. Kovtun, Y.O. Prostota, A.I. Tolmachev, Metallochromicmerocyanines of 8-hydroxyquinoline series. Dyes Pigments 58 (1), 83–91 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Ghedini, M. La Deda, I. Aiello, A. Grisolia, Synthesis and photo physical characterization of soluble photo luminescent metal complexes with substituted 8-hydroxyquinolines. Synth. Met. 138, 189–192 (2003)CrossRefGoogle Scholar
  10. 10.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)CrossRefGoogle Scholar
  11. 11.
    C.H. Chen, J. Shi, Coord. Chem. Rev. 171, 161–174 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, Am. Chem. Soc. 122, 5147–5157 (2000)CrossRefGoogle Scholar
  13. 13.
    P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Chem. Mater. 16, 4556–4573 (2004)CrossRefGoogle Scholar
  14. 14.
    Q. Mei, N. Du, M. Lu, Synthesis and characterization of high molecular weight metaloquinolate containing polymers, Appl. Polym. Sci. 99, 1945–1952(2006)CrossRefGoogle Scholar
  15. 15.
    N. Du, R. Tian, J. Peng, M. Lu, Synthesis and photo-physical characterization of the free-radical copolymerization of metaloquinolate-pendant monomers with methyl methacrylate. Polym. Sci. Part A, 43, 397–406(2005)CrossRefGoogle Scholar
  16. 16.
    B. Stefan, B. Wolfgang, Dispersive electron transport in tris(8-Hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy. Phys. Rev. Lett. 89, 286601 (2002)CrossRefGoogle Scholar
  17. 17.
    European Patent Specification, Electroluminescent Quinolate, Bulletin/12 EP 1144543 B1 (2004)Google Scholar
  18. 18.
    C.W. Tangand, S.A. VanSlyke, Organic electroluminescent diode. Appl. Phys. Lett. 51, 913–915 (1987)CrossRefGoogle Scholar
  19. 19.
    Y. Hamada, T. Sano, M. Fujita, Y. Nishio, Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn. J. Appl. Phys. 32, L514–L515 (1993)CrossRefGoogle Scholar
  20. 20.
    C.H. Cheng, S. Jianmin, Metal chelates as emitting materials for organic electroluminescence. Coord. Chem. Rev 171, 161–174 (1998)CrossRefGoogle Scholar
  21. 21.
    Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, S.M. Elahi, A. Boochani, Microstructure and micro morphology of ZnO thin films: case study on Al doping and annealing effects. Superlattic. Microst. 93, 109–121 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Dejam, S.M. Elahi, H.H. Nazari, H. Elahi, S. Solaymani, A. Ghaderi, Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing. J Mater. Sci. 27, 685–696(2016)Google Scholar
  23. 23.
    Ş. Ţălu, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, Surface micro morphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electro catalysts. RSC Adv. 6, 27228–27234 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Bing-she, H. Yu-ying, W. Hua, Z. He-feng, L. Xuguang, C. Ming-wei, The effects of crystal structure on optical absorption/ photoluminescence of bis (8-hydroxyquinoline)zinc. Solid State Commun. 136, 318–322 (2005)CrossRefGoogle Scholar
  25. 25.
    X. Wang, M. Shao and L. Liu, High photoluminescence and photo switch of bis(8-hydroxyquinoline) zinc nanoribbons. Synth. Metals 160, 718–721(2010).CrossRefGoogle Scholar
  26. 26.
    Z. X-Bao Chen, Gong, B-Chuan Zhou, X-Wei Hu, C-Jie Mao, J-Ming Song, H-Lin Niu, Sh-Yi Zhang, Synthesis of 8-hydroxyquinoline cadmium (Cdq2) nano-belts with enhanced electro generated chemi-luminescence properties. Mater. Lett. 75, 155–157 (2012)CrossRefGoogle Scholar
  27. 27.
    L.S. Sapochak, F.E. Benincasa, R.S. Schofield, J.L. Baker, K.K.C. Riccio, D. Fogarty, H. Kohlmann, K.F. Ferris, P.E. Burrows, Electroluminescent zinc(II) bis(8-hydroxyquinoline): Structural effects on electronic states and device performance. Am. Chem. Soc. 124, 6119–6125 (2002)CrossRefGoogle Scholar
  28. 28.
    T.A. Hopkins, K. Meerholz, S. Shaheen, M.L. Anderson, A. Schmidt, B. Kippelen, A.B. Padias, J.H.K. Hall, N. Peyghambarian, Armstrong, substituted aluminum and zinc quinolate with blue shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminescence characterization. Chem. Mater. 8, 344–351 (1996)CrossRefGoogle Scholar
  29. 29.
    M.M. El-Nahass, A.M. Farid, A.A. Atta, Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III)(Alq3) thermal evaporated thin films. Alloys Compd. 507, 112–119(2010)CrossRefGoogle Scholar
  30. 30.
    Y. Kai, M. Moraita, N. Yasuka, N. Kasai, The crystal and molecular structure of anhydrous zinc 8-quinolinolate complex, (Zn(C9H6NO)2)4. Bull. Chem. Soc. Jpn. 58, 1631–1635 (1985)CrossRefGoogle Scholar
  31. 31.
    J.P. Phillips, J.F. Deye, Infrared spectra of oxine chelates. Anal. Chim. Acta. 17, 231–233 (1957)CrossRefGoogle Scholar
  32. 32.
    T. Gavrilko, R. Fedorovich, G. Dovbeshko, A. Marchenko, A. Naumovets, V. Nechytaylo, G. Puchkovska, L. Viduta, J. Baran, H. Ratajczak, FTIR spectroscopic and STM studies of vacuum deposited aluminum (III) 8-hydroxyquinoline thin films. Mol. Struct. 704, 163–168 (2004)CrossRefGoogle Scholar
  33. 33.
    J.E. Tackett, D.T. Sawyer, Properties and infrared spectra in the potassium bromide region of 8-quinolinol and its metal chelates. Inorg. Chem. 3, 692–696 (1964)CrossRefGoogle Scholar
  34. 34.
    C. Engelter, G.E. Jackson, C.L. Knight, D.A. Thornton, Spectra-structure correlations from the infrared spectra of some transition metal complexes of 8-hydroxyquinoline. Mol. Struct. 213, 133–144 (1989)CrossRefGoogle Scholar
  35. 35.
    B. Marchon, L. Bokobza, G. Cote, Vibrational study of 8-quinolinol and 7-(4-ethyl-1-methyloctyl)-8-quinolinol (Kelex100), two representative members of an important chelating agent family. Spectrochim. Acta A 42, 537–542(1986)CrossRefGoogle Scholar
  36. 36.
    R.J. Magee, L. Gordon, The infrared spectra of chelate Compounds-I: a study of some metal chelate compounds of 8-hydroxyquinoline in the region 625 to 5000 cm–1. Talanta 10, 851–859 (1963)CrossRefGoogle Scholar
  37. 37.
    S. Atalay, H.I. Adiguzel, F. Atalay, Infrared absorption studyof Fe2O3–CaO–SiO2 glass ceramics. Mater. Sci. Eng. A 304, 796–799 (2001)CrossRefGoogle Scholar
  38. 38.
    W. Chen, Q. Peng, Y.D. Li, Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Cryst. Growth Des. 8, 564–567 (2008)CrossRefGoogle Scholar
  39. 39.
    H.C. Pan, H.Y. Lin, Q.M. Shen, J. Zhu, Cadmium(II) (8-hydroxyquinoline) chloride nanowires: synthesis, characterization and glucose-sensing application. Adv. Funct. Mater. 18, 3692–3698 (2008)CrossRefGoogle Scholar
  40. 40.
    X.H. Wang, M.W. Shao, L. Li, Photoconductivity of a bundle of bis-(8-hydroxyquinoline) cadmium nanoribbons. J. Mater. Sci. 22, 120–123 (2010)Google Scholar
  41. 41.
    X. Bingshe, W. Hua, H. Yuying, G. Zhixiang, Z. Hefeng, Preparation and performance of a new type of blue light-emitting materials-Alq3. J. Lumin. 122, 663–666 (2007)Google Scholar
  42. 42.
    M.A. Baldo, S.R. Forrest, Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201–085217 (2001)CrossRefGoogle Scholar
  43. 43.
    M. Braun, J. Gmeiner, M. Tzolov, M. Coelle, F.D. Meyer, W. Milius, H. Hillebrecht, O. Wendland, J.U. von Schűtz, W. Brűtting, A new crystalline phase of the electroluminescent material tris-(8-hydroxyquinoline) aluminum exhibiting blue shifted fluorescence. Chem. Phys. 114, 9623–9625 (2001)Google Scholar
  44. 44.
    Y.K. Han, S.U. Lee, Molecular orbital study on the ground and excited states of methyl substituted tris-(8-hydroxyquinoline) aluminum(III). Chem. Phys. Lett. 366, 9–16 (2002)CrossRefGoogle Scholar
  45. 45.
    W. Curioni, Andreoni, Computer simulations for organic light-emitting diodes. IBM J. Res. Dev. 45, 101–113 (2001)CrossRefGoogle Scholar
  46. 46.
    M. Colle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brutting, Preparation and characterization of blue-luminescent tris(8-hydroxyquinoline)-aluminum (Alq3). Adv. Funct. Mat. 13, 108–112 (2003)CrossRefGoogle Scholar
  47. 47.
    M.M. Levichkova, J.J. Assa, H. Fröb, K. Leo, Blue luminescent isolated Alq3 molecules in a solid-state matrix. Appl. Phys. Lett. 88, 201912–201915 (2006)CrossRefGoogle Scholar
  48. 48.
    M. Al-Ibrahim, H.K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, S. Sensfuss, The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells. Org. Electron. 6, 65–77 (2005)CrossRefGoogle Scholar
  49. 49.
    A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Electron transport materials for organic light-emitting diodes. Chem. Mater. 16(23), 4556–4573 (2004)CrossRefGoogle Scholar
  50. 50.
    B.W.D. Andrade, S. Datta, S.R. Forrest, P. Djurovich, E. Polikarpov, M.E. Thompson, Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org. Electron. 6, 11–20 (2005)CrossRefGoogle Scholar
  51. 51.
    M. Thelakkat, H.W. Schmidt, Synthesis and properties of Novel derivatives of 1, 3, 5-tris (diarylamino) benzenes for electroluminescent devices. Adv. Mater. 10, 219–223 (1998)CrossRefGoogle Scholar
  52. 52.
    F.S. Rodembusch, F.R. Brand, D.S. Corrêa, J.C. Pocos, M. Martinelli, V. Stefani, Transition metal complexes from 2-(2′-hydroxyphenyl) benzoxazole: a spectroscopic and thermogravimetric stability study. Mater. Chem. Phys 92, 389–393 (2005)CrossRefGoogle Scholar
  53. 53.
    J.L. Bredas, R. Silbey, D.S. Boudreux, R.R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105(22), 6555–6559 (1983)CrossRefGoogle Scholar
  54. 54.
    P.I. Djurovich, E.I. Mayo, S.R. Forrest, M.E. Thompson, Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org. Electron. 10, 515–520 (2009)CrossRefGoogle Scholar
  55. 55.
    Mohamed M. Ahmida and S. Holger Eichhorn, Measurement and prediction of electronic properties of discotictriphenylenes and phthalocyanines. ECS Trans. 25(26), 1–102010CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zahra Shahedi
    • 1
  • Mohammad Reza Jafari
    • 1
    • 2
  • Abdol Ali Zolanvari
    • 1
  1. 1.Department of Physics, Faculty of ScienceArak UniversityArakIran
  2. 2.School of PhysicsIran University of Science and TechnologyTehranIran

Personalised recommendations