Skip to main content

Assessed interfacial strength and elastic moduli of the bonding material from shear-off test data

Abstract

A simple and physically meaningful analytical stress model is developed in application to shear-off testing with an objective to evaluate the interfacial shearing stress in the bonding material from the measured shear off force. The model can be used also for the evaluation of the shear modulus of the bonding material, if the interfacial displacement is also measured. The general concept is illustrated by a numerical example. In the authors’ opinion, the suggested methodology, based on the concept of the interfacial compliance, suggested by the first author in his 1986 ASME J. Appl. Mech. paper, could become a basis for a new effective experimental method for assessing the interfacial shearing strength and elastic moduli of the bonding material in electronics. The methodology can be used particularly in application to the recently suggested sintered silver bonding materials to evaluate their bonding strength from the measured force-at-failure and shear modulus from the measured shearing force and displacement.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. M. Klein, B. Wiens, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl, Behaviour of platinum as UBM in flip chip solder joints. In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 40–45

  2. R.H. Uang, K.C. Chen, S.W. Lu, H.T. Hu, S.H. Huang, The reliability performance of low cost bumping on aluminum and copper wafer. In Proceedings of the 3rd Electronics Packaging Technology Conference (EPTC 2000), Singapore, 5–7 December 2000, pp. 292–296

  3. R.J. Coyle, P.P. Solan, A.J. Serafino, S.A. Gahr, The influence of room temperature aging on ball shear strength and microstructure of area array solder balls. In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 160–169

  4. K.M. Levis, A. Mawer, Assembly and solder joint reliability of plastic ball grid array with lead-free versus lead–tin interconnect. In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 1198–1204

  5. Y. Tomita, Q. Wu, A. Maeda, S. Baba, N. Ueda, Advanced surface plating on the organic FC-BGA package. In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 861–867

  6. I.S. Kang, J.H. Kim, I.S. Park, K.R. Hur, S.J. Cho, H. Han, J. Yu, The solder joint and runner metal reliability of wafer-level CSP (omega-CSP). In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 87–92

  7. S.-W.R. Lee, C.C. Yan, Z. Karim, X. Huang, Assessment on the effect of electroless nickel plating on the reliability of solder ball attachment to the bond pads of PBGA substrate. In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 868–873

  8. C.K. Shin, J.Y. Huh, Effect of Cu-containing solders on the critical IMC thickness for the shear strength of BGA solder joints. In Proceedings of the 3rd Electronics Packaging Technology Conference (EPTC 2000), Singapore, 5–7 December 2000, pp. 406–411

  9. S.Y. Jang, K.W. Paik, Comparison of electroplated eutectic Sn/Bi and Pb/Sn solder bumps on various UBM systems. In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 64–68

  10. S.J. Cho, J.Y. Kim, M.G. Park, I.S. Park, H.S. Chun, Under bump metallurgies for a wafer level CSP with eutectic Pb–Sn solder ball. In Proceedings of the 50th ECTC, Nevada, 21–24 May 2000, pp. 844–849

  11. S.-W.R. Lee, K. Newman, L. Hu, Thermal fatigue analysis of PBGA solder joints with the consideration of damage evolution. In Packaging of Electronic and Photonic Devices, EEP, vol. 28, Florida, 5–10 November 2000, pp. 207–212

  12. D. Vogel, R. Kiihnert, M. Dost, B. Michel, Determination of packaging material properties utilizing image correlation techniques. J. Electron. Packag. 124, 345–351 (2002)

    Article  Google Scholar 

  13. A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B. Michel, H. Reichl, Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation. In 53rd ECTC, 2003, pp. 603–610

  14. R. Dudek, W. Faust, J. Vogel, B. Michel, In-situ solder fatigue studies using a thermal lap shear test. In Proceedings of International Conference on Electronics Packaging Technology, 2004, pp. 396–403

  15. R. Dudek, H. Walter, R. Doring, B. Michel, Thermal fatigue modelling for SnAgCu and SnPb solder joints. In Proceedings of EuroSimE 2004, Brussels, Belgium, 2004, pp. 557–564

  16. A. Wymysłowski, B. Bober, Ł. Dowhań, T. Fałat, J. Felba, K. Małecki, P. Matkowski, K. Urbański, Z. Żaluk, Shearing tests for solder joints reliability assessment. In XXXI International Conference of IMAPS Poland Chapter, Rzeszów-Krasiczyn, Poland, 23–26 September 2007

  17. J. Lau (ed.), Solder Joint Reliability: Theory and Applications (Van Nostrand Reinhold, New York, 1990)

  18. W. Engelmaier, Reliability for surface mount solder joints: physics and statistics of failure. In Proceedings of the Surface Mount International, vol. 1, San Jose, CA, August 1992, p. 433

  19. E. Suhir, Stresses in bi-metal thermostats. ASME J. Appl. Mech. 53(3), 657–660 (1986)

  20. E. Suhir, Interfacial stresses in bi-metal thermostats. ASME J. Appl. Mech. 56(3), 595–600 (1989)

  21. A.Y. Kuo, Thermal stress at the edge of a bi-metallic thermostat. ASME J. Appl. Mech. 57, 354–358 (1990)

    Article  Google Scholar 

  22. C. Caswell, Manufacturing and reliability challenges with QFN. In IMAPS Conference, Atlantic City, NJ, June 2010

  23. E. Suhir, Thermal stress in a bi-material assembly adhesively bonded at the ends. J. Appl. Phys. 89(1), 120–129 (2001)

    Article  Google Scholar 

  24. E. Suhir, Thermal stress in an adhesively bonded joint with a low modulus adhesive layer at the ends. J. Appl. Phys. 93, 3657–3661 (2003)

    Article  Google Scholar 

  25. E. Suhir, Interfacial thermal stresses in a bi-material assembly with a low-yield-stress bonding layer. Model. Simul. Mater. Sci. Eng. 14, 1015–1030 (2006)

    Article  Google Scholar 

  26. E. Suhir, On a paradoxical situation related to bonded joints: Could stiffer mid-portions of a compliant attachment result in lower thermal stress?. JSME J. Solid Mech. Mater. Eng. 3(7), 990–997 (2009)

    Article  Google Scholar 

  27. E. Suhir, Thermal stress in a bi-material assembly with a ‘Piecewise-Continuous’ bonding layer: theorem of three axial forces. J. Phys. D 42, 363–376 (2009)

    Google Scholar 

  28. E. Suhir, L. Bechou, B. Levrier, Predicted size of an inelastic zone in a ball-grid-array assembly. ASME J. Appl. Mech. 80, 021007 (2013)

    Article  Google Scholar 

  29. E. Suhir, Avoiding low-cycle fatigue in solder material using inhomogeneous column-grid-array (CGA) design. Chip Scale Rev. March–April (2016)

  30. H. Schwarzbauer, Method of securing electronic components to a substrate. US Patent 4,810,672, 7 March 1989

  31. H. Schwarzbauer, R. Kuhnert, Novel large area joining technique for improved power device performance. IEEE Trans. Ind. Appl. 27(1), 93–95 (1991)

    Article  Google Scholar 

  32. C. Mertens, R. Sittig, Low temperature joining technique for improved reliability. In International Conference on Integrated Power Electronic Systems, Chips 2002, Bremen, Germany, 2002

  33. G. Bai, Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection, PhD Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, October 2005

  34. C. Göbl, P. Beckedahl, H. Braml, Low temperature sinter technology: die attachment for automotive power electronic applications. In Automotive Power Electronics, Paris, 21–22 June 2006, p. 5

  35. T. Wang, X. Chen, G.-Q. Lu, G.-Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36(10), 1333–1340 (2007)

    Article  Google Scholar 

  36. N. Lubick, Nanosilver toxicity: ions, nanoparticles or both? Environ. Sci. Technol. 42(23), 8617–8617 (2008)

    Article  Google Scholar 

  37. P.O. Quintero, T. Oberc, F.P. McCluskey, High temperature die attach by transient liquid phase sintering. In HiTEC 2008 (IMAPS, Albuquerque, 2008), pp. 207–212. http://scholar.lib.vt.edu/theses/available/etd-10312005-163634/unrestricted/Dissertation-GBai05.pdf

  38. M.H. Poech, M. Weiss, K. Gruber, Chip drop after silver sintering process. In COMSOL Proceedings, Milan, 2009

  39. B. McPherson, J.M. Hornberger, J. Bourne, A.B. Lostetter, R.M. Schupbach, R. Shaw, B. Reese, B. Rowden, H.A. Mantooth, S. Ang, J.C. Balda, K. Okumura, T. Otsuka, Packaging of high-temperature 50 kW SiC motor drive module for hybrid electric vehicles. Adv. Microelectron. 37(1), 20–26 (2010)

    Google Scholar 

  40. H.A. Mantooth, S. Ang, J.C. Balda, K. Okumura, T. Otsuka, Packaging of high temperature 50 kW SiC motor drive module for hybrid-electric vehicles. Adv. Microelectron. 37(1), 20–26 (2010)

    Google Scholar 

  41. D. Wakuda, K.-S. Kim, K. Suganuma, Ag nanoparticle paste synthesis for room temperature bonding. IEEE CPMT Trans. 33(1), 1–6 (2010)

    Google Scholar 

  42. T.G. Lei, J.N. Calata, G.-Q. Lu, X. Chen, S. Luo, Low-temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips. IEEE CPMT Trans. 33(1), 98–104 (2010)

    Google Scholar 

  43. M. Wrosch, A. Soriano, Sintered conductive adhesives for high temperature packaging. In 2010 ECTC

  44. V. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: a review. CPMT Trans. 1(4), 457–478 (2011)

    Google Scholar 

  45. C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynoud, H. Morel, Die Attach of Power Devices Using Silver Sintering—Bonding Process Optimization and Characterization (VDE Verlag GMBH, Berlin, 2012)

  46. S. Kraft, A. Schletz, M. Maertz, Reliability of silver sintering on DBC and DBA substrates for power electronic applications. In CIPS 2012, Nuremberg, Germany, 6–8 March 2012

  47. H. Jin, S. Kanagavel, W.-F. Chin, Novel conductive paste using hybrid silver sintering technology for high reliability power semiconductor packaging. In 2014 ECTC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Suhir.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suhir, E., Ghaffarian, R., Yi, S. et al. Assessed interfacial strength and elastic moduli of the bonding material from shear-off test data. J Mater Sci: Mater Electron 28, 6794–6799 (2017). https://doi.org/10.1007/s10854-017-6376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6376-x

Keywords

  • Interfacial Shearing Stress
  • Bonding Layer
  • Bonding Material
  • Ball Bond
  • Interfacial Displacement