Temperature-stable high relative permittivity in Ca-doped Ba0.5Bi0.5Ti0.75Mg0.25O3 ceramics

Abstract

Ba0.5−x Ca x Bi0.5Ti0.75Mg0.25O3 (BCTM) ceramics were processed through a conventional solid state route. X-ray diffraction analysis of the compositions showed single phase cubic perovskite structure, consistent with the Raman studies. The microstructure of sintered ceramics comprised dense packed grains. Relative permittivity was observed to decrease with increase in Ca2+ concentration, presumably due to smaller ionic polarizability of Ca2+ than Ba2+. The samples exhibited high relative permittivity (1565–1980) stable over a wide range of temperature as high as 550 °C along with a high resistivity of the order 109–1010 Ω cm, suitable for high temperature applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    M.-J. Pan, C.A. Randall, IEEE Elec. Insul. Mag., 26, 44 (2010)

    Article  Google Scholar 

  2. 2.

    H. Wang, Partial fulfillment of course requirement for MatE 115, (2002)

  3. 3.

    R. Muhammad, Y. Iqbal, I.M. Reaney, J. Am. Ceram. Soc. 99, 2089 (2016)

    Article  Google Scholar 

  4. 4.

    A. Peláiz-Barranco, F. Calderón-Piñar, O. García-Zaldívar, Y. González-Abreu, Relaxor behaviour in ferroelectric ceramics, INTECH Open Access Publisher, (2012)

  5. 5.

    R. Muhammad, Y. Iqbal, J. Mater. Sci. 26, 4870 (2015)

    Google Scholar 

  6. 6.

    T. Mitsui, W.B. Westphal, Phys. Rev. B 124, 1354 (1961)

    Article  Google Scholar 

  7. 7.

    R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R. Evans, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N.M. Alford, J. Electroceram. 22, 245 (2009)

    Article  Google Scholar 

  8. 8.

    C. Kuper, R. Pankrath, H. Hesse, Appl. Phys. A 65, 301 (1997)

    Article  Google Scholar 

  9. 9.

    A. Kotlyarchuk, A. Ragulya, V. Klymenko, N. Dubovitskaya, T. Lobunets, S. Shatskikh, Proceed. Int. Conf. Nanomat. 1, 04NMEEE04 (2012)

    Google Scholar 

  10. 10.

    Q. Zhang, Z. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94, 4335 (2011)

    Article  Google Scholar 

  11. 11.

    R. Muhammad, Y. Iqbal, Ceram. Int. 42, 19413 (2016)

    Article  Google Scholar 

  12. 12.

    A. Zeb, S.J. Milne, J. Am. Ceram. Soc. 96, 2887 (2013)

    Article  Google Scholar 

  13. 13.

    R.T. Shannon, Acta Crystallogr. Sec. A 32, 751 (1976)

    Article  Google Scholar 

  14. 14.

    J.L. Parsons, L. Rimai, Solid State Commun. 5, 423 (1967)

    Article  Google Scholar 

  15. 15.

    S. Zheng, E. Odendo, L. Liu, D. Shi, Y. Huang, L. Fan, J. Chen, L. Fang, B. Elouadi, J. Appl. Phys. 113, 094102 (2013)

    Article  Google Scholar 

  16. 16.

    X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, J. Am. Ceram. Soc. 98, 804 (2015)

    Article  Google Scholar 

  17. 17.

    D. Ma, X. Chen, G. Huang, J. Chen, H. Zhou, L. Fang, Ceram. Int. 41, 7157 (2015)

    Article  Google Scholar 

  18. 18.

    J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)

    Article  Google Scholar 

  19. 19.

    J. Pokorný, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110 (2011)

    Article  Google Scholar 

  20. 20.

    D. Viehland, S. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)

    Article  Google Scholar 

  21. 21.

    L.E. Cross, Ferroelectrics, 76, 241 (1987)

    Article  Google Scholar 

  22. 22.

    V. Westphal, W. Kleemann, M. Glinchuk, Phys. Rev. Lett. 68, 847 (1992)

    Article  Google Scholar 

  23. 23.

    H. Yu, Z.-G. Ye, J. Appl. Phys 103, 4114 (2008)

    Google Scholar 

  24. 24.

    T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, J. Am. Ceram. Soc. 98, 559 (2015)

    Article  Google Scholar 

  25. 25.

    F. Zhu, T.A. Skidmore, A.J. Bell, T.P. Comyn, C.W. James, M. Ward, S.J. Milne, Mater. Chem. Phys. 129, 411 (2011)

    Google Scholar 

  26. 26.

    F.D. Morrison, D.C. Sinclair, A.R. West, J. Appl. Phys. 86, 6355 (1999)

    Article  Google Scholar 

  27. 27.

    R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  Google Scholar 

  28. 28.

    Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, J. Appl. Phys. 89, 5647 (2001)

    Article  Google Scholar 

  29. 29.

    A. Zeb, S. Milne, J. Mater. Sci. 26, 9243 (2015)

    Google Scholar 

  30. 30.

    C. Ang, Z. Yu, L. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  31. 31.

    N. Raengthon, D.P. Cann, IEEE Trans. Ultrason. Ferr. 58, 1954 (2011)

    Article  Google Scholar 

  32. 32.

    V.-C. Lo, W.W.-Y. Chung, H. Cao, X. Dai, J. Appl. Phys. 104, 064105 (2008)

    Article  Google Scholar 

  33. 33.

    C. Groh, K. Kobayashi, H. Shimizu, Y. Doshida, Y. Mizuno, E.A. Patterson, J. Rödel, J. Am. Ceram. Soc. 99, 2040 (2016)

    Article  Google Scholar 

  34. 34.

    R. Dittmer, W. Jo, D. Damjanovic, J. Rödel, J. Appl. Phys. 109, 034107 (2011)

    Article  Google Scholar 

  35. 35.

    Z. Zhang, Y. Wu, J. Miao, Z. Liu, Y. Li, Ceram. Int. 41, S9 (2015)

    Article  Google Scholar 

  36. 36.

    X. Chen, D. Ma, G. Huang, J. Chen, H. Zhou, L. Fang, Ceram. Int. 41, 13883 (2015)

    Article  Google Scholar 

  37. 37.

    Z. Liu, H. Fan, M. Li, J. Mater. Chem. C 3, 5851 (2015)

    Article  Google Scholar 

  38. 38.

    R. Muhammad, A. Khesro, J. Am. Ceram. Soc. (2017). doi:10.1111/jace.14684

    Google Scholar 

Download references

Acknowledgements

The author (Raz Muhammad) thanks to higher education commission of Pakistan for research fellowship at the University of Sheffield, UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raz Muhammad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhammad, R., Khesro, A. & Iqbal, Y. Temperature-stable high relative permittivity in Ca-doped Ba0.5Bi0.5Ti0.75Mg0.25O3 ceramics. J Mater Sci: Mater Electron 28, 6763–6768 (2017). https://doi.org/10.1007/s10854-017-6372-1

Download citation

Keywords

  • Oxygen Vacancy
  • Bi2O3
  • Relative Permittivity
  • Ceramic Capacitor
  • High Relative Permittivity