Abstract
Ba0.5−x Ca x Bi0.5Ti0.75Mg0.25O3 (BCTM) ceramics were processed through a conventional solid state route. X-ray diffraction analysis of the compositions showed single phase cubic perovskite structure, consistent with the Raman studies. The microstructure of sintered ceramics comprised dense packed grains. Relative permittivity was observed to decrease with increase in Ca2+ concentration, presumably due to smaller ionic polarizability of Ca2+ than Ba2+. The samples exhibited high relative permittivity (1565–1980) stable over a wide range of temperature as high as 550 °C along with a high resistivity of the order 109–1010 Ω cm, suitable for high temperature applications.
This is a preview of subscription content, access via your institution.




References
M.-J. Pan, C.A. Randall, IEEE Elec. Insul. Mag., 26, 44 (2010)
H. Wang, Partial fulfillment of course requirement for MatE 115, (2002)
R. Muhammad, Y. Iqbal, I.M. Reaney, J. Am. Ceram. Soc. 99, 2089 (2016)
A. Peláiz-Barranco, F. Calderón-Piñar, O. García-Zaldívar, Y. González-Abreu, Relaxor behaviour in ferroelectric ceramics, INTECH Open Access Publisher, (2012)
R. Muhammad, Y. Iqbal, J. Mater. Sci. 26, 4870 (2015)
T. Mitsui, W.B. Westphal, Phys. Rev. B 124, 1354 (1961)
R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R. Evans, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N.M. Alford, J. Electroceram. 22, 245 (2009)
C. Kuper, R. Pankrath, H. Hesse, Appl. Phys. A 65, 301 (1997)
A. Kotlyarchuk, A. Ragulya, V. Klymenko, N. Dubovitskaya, T. Lobunets, S. Shatskikh, Proceed. Int. Conf. Nanomat. 1, 04NMEEE04 (2012)
Q. Zhang, Z. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94, 4335 (2011)
R. Muhammad, Y. Iqbal, Ceram. Int. 42, 19413 (2016)
A. Zeb, S.J. Milne, J. Am. Ceram. Soc. 96, 2887 (2013)
R.T. Shannon, Acta Crystallogr. Sec. A 32, 751 (1976)
J.L. Parsons, L. Rimai, Solid State Commun. 5, 423 (1967)
S. Zheng, E. Odendo, L. Liu, D. Shi, Y. Huang, L. Fan, J. Chen, L. Fang, B. Elouadi, J. Appl. Phys. 113, 094102 (2013)
X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, J. Am. Ceram. Soc. 98, 804 (2015)
D. Ma, X. Chen, G. Huang, J. Chen, H. Zhou, L. Fang, Ceram. Int. 41, 7157 (2015)
J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)
J. Pokorný, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110 (2011)
D. Viehland, S. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)
L.E. Cross, Ferroelectrics, 76, 241 (1987)
V. Westphal, W. Kleemann, M. Glinchuk, Phys. Rev. Lett. 68, 847 (1992)
H. Yu, Z.-G. Ye, J. Appl. Phys 103, 4114 (2008)
T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, J. Am. Ceram. Soc. 98, 559 (2015)
F. Zhu, T.A. Skidmore, A.J. Bell, T.P. Comyn, C.W. James, M. Ward, S.J. Milne, Mater. Chem. Phys. 129, 411 (2011)
F.D. Morrison, D.C. Sinclair, A.R. West, J. Appl. Phys. 86, 6355 (1999)
R.D. Shannon, J. Appl. Phys. 73, 348 (1993)
Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, J. Appl. Phys. 89, 5647 (2001)
A. Zeb, S. Milne, J. Mater. Sci. 26, 9243 (2015)
C. Ang, Z. Yu, L. Cross, Phys. Rev. B 62, 228 (2000)
N. Raengthon, D.P. Cann, IEEE Trans. Ultrason. Ferr. 58, 1954 (2011)
V.-C. Lo, W.W.-Y. Chung, H. Cao, X. Dai, J. Appl. Phys. 104, 064105 (2008)
C. Groh, K. Kobayashi, H. Shimizu, Y. Doshida, Y. Mizuno, E.A. Patterson, J. Rödel, J. Am. Ceram. Soc. 99, 2040 (2016)
R. Dittmer, W. Jo, D. Damjanovic, J. Rödel, J. Appl. Phys. 109, 034107 (2011)
Z. Zhang, Y. Wu, J. Miao, Z. Liu, Y. Li, Ceram. Int. 41, S9 (2015)
X. Chen, D. Ma, G. Huang, J. Chen, H. Zhou, L. Fang, Ceram. Int. 41, 13883 (2015)
Z. Liu, H. Fan, M. Li, J. Mater. Chem. C 3, 5851 (2015)
R. Muhammad, A. Khesro, J. Am. Ceram. Soc. (2017). doi:10.1111/jace.14684
Acknowledgements
The author (Raz Muhammad) thanks to higher education commission of Pakistan for research fellowship at the University of Sheffield, UK.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muhammad, R., Khesro, A. & Iqbal, Y. Temperature-stable high relative permittivity in Ca-doped Ba0.5Bi0.5Ti0.75Mg0.25O3 ceramics. J Mater Sci: Mater Electron 28, 6763–6768 (2017). https://doi.org/10.1007/s10854-017-6372-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-017-6372-1
Keywords
- Oxygen Vacancy
- Bi2O3
- Relative Permittivity
- Ceramic Capacitor
- High Relative Permittivity