Skip to main content
Log in

Substrate temperature and molar ratio induced changes on the properties of nebulized spray deposited MnS films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Various properties of MnS thin films deposited on glass substrate by a simple and novel nebulized spray technique are described in this work. The thickness of MnS thin film increases linearly with increase in molar ratio and substrate temperature. From the X-ray diffraction study, the impact of molar ratio and substrate temperature is well pronounced in the formation of well crystalline MnS thin films. The SEM images showed more grains formation and well defined compact nature composed of single type densely packed grains. The AFM images exhibited that all the films show homogenous surface with pinhole free in nature. The decrease in average transmittance of films with increasing substrate temperature and molar ratio are due to the influence of grain growth induced by the enhancement in crystalline behavior of the films. It is observed that the energy band gaps of MnS thin films are decreased with increasing substrate temperature and molar ratio. The intensity of emission peaks increased with increasing solution concentration and substrate temperature owing to the change in surface area to volume ratio of MnS micro/nano-structures with molar ratio. All the Raman peaks showed the vibrations of Mn–S bonds. The magnetic study confirmed the ferromagnetic behavior of MnS films at 5 K, whereas the film exhibits paramagnetic behavior at 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Sobhani, M. Salavati-Niasari, Superlattices Microstruct. 59, 1–12 (2013)

    Article  Google Scholar 

  2. A. Sobhani, M. Salavati-Niasari, M. Sobhani, Mater. Sci. Semcond. Process. 16, 410 (2013)

    Article  Google Scholar 

  3. M. Sobhani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Clust. Sci. 23, 1143 (2012)

    Article  Google Scholar 

  4. D. Ghanbari, M. Salavati-Niasari, M. Sabet, J. Clust. Sci. 23, 1081 (2012)

    Article  Google Scholar 

  5. H. Emadi, M. Salavati-Niasari, F. Davar, Polyhedron 31, 438 (2012)

    Article  Google Scholar 

  6. P.G. Sheikhiabadi, F. Davar, M. Salavati-Niasari, Inorg. Chim. Acta 376, 271 (2011)

    Article  Google Scholar 

  7. M. Shakouri-Arani, M. Salavati-Niasari, New J. Chem. 38, 1179 (2014)

    Article  Google Scholar 

  8. P.G. Sheikhiabadi, M. Salavati-Niasari, F. Davar, Mater. Lett. 71, 168 (2012)

    Article  Google Scholar 

  9. P.G. Sheikhiabadi, M. Salavati-Niasari, F. Davar, Superlattices Microstruct. 53, 76 (2013)

    Article  Google Scholar 

  10. O. Goede, W. Heimbrodt, Phys. Stat. Sol. B 146 11 (1988)

    Article  Google Scholar 

  11. H. Sato, T. Mihara, A. Furuta, Y. Ueda, H. Namatame, M. Taniguchi, J. Electron Spectrosc. Relat. Phenom. 78, 87 (1996)

    Article  Google Scholar 

  12. D.R. Duffman, R.L. Wild, Phys. Rev. 156, 989 (1967)

    Article  Google Scholar 

  13. R. Tappero, A. Lichanot, Chem. Phys 236, 97 (1998)

    Article  Google Scholar 

  14. M. Okajima, T. Tohda, J. Cryst. Growth 117, 810 (1992)

    Article  Google Scholar 

  15. S. Biswas, S. Kar, S. Chaudhuri, J. Cryst. Growth 284, 129 (2005)

    Article  Google Scholar 

  16. T. Dedova, M. Krunks, I. Gromyko, V. Mikli, I. Sildos, K. Utt, T. Unt, Phys. Status Solidi A 211, 514 (2014)

    Article  Google Scholar 

  17. Y. Ji-Beom, L.F. Alan, R.H. Bube, J. Appl. Phys. 68, 4694 (1990)

    Article  Google Scholar 

  18. G.B. Williamson, R.C. Smallman, Phil. Mag 1, 34 (1956)

    Article  Google Scholar 

  19. B. Lonnberg, T. Lundstrom, J. Mater. Sci. 29, 2993 (1994)

    Article  Google Scholar 

  20. W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, J. Phys 23, 6217 (2007)

    Google Scholar 

  21. E. Ulutas, F. Guneri, G. Kirmizigul, F.Gode Altindemir, C. Gumus, Mater. Chem. Phys. 138, 817 (2013)

    Article  Google Scholar 

  22. R. Tamrakar, M. Ramrakhiani, B.P. Chandra, Open Nanosci. J. 2, 12 (2008)

    Article  Google Scholar 

  23. J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15, 627 (1966)

    Article  Google Scholar 

  24. Y. Shi, F. Xue, C. Li, Q. Zhao, Z. Qu, Mater. Res. Bull. 46, 483 (2011)

    Article  Google Scholar 

  25. D. Lokhande, K.M. Gadave, Turk. J. Phys. 18, 83 (1994)

    Google Scholar 

  26. K. Otto, A. Katerski, A. Mere, O. Volobujeva, M. Krunks, Thin Solid Films 519, 3055 (2011)

    Article  Google Scholar 

  27. M.R.I. Chowdhury, J. Podder, A.B.M.O. Islam, Cryst. Res. Technol. 46, 267 (2011)

    Article  Google Scholar 

  28. A. Changhua, K. Tang, X. Liu, F. Li, G. Zhou, Y. Qian, J. Cryst. Growth 252, 575 (2003)

    Article  Google Scholar 

  29. R. Sivakumar, K. Punitha, C. Sanjeeviraja, R. Gopalakrishnan, Mater. Lett. 121, 141 (2014)

    Article  Google Scholar 

  30. Y. Zhang, Z. Zhang, S. Wang, X. Ma, Y. Qian, Mater. Chem. Phys. 97, 365 (2006)

    Article  Google Scholar 

  31. Z.F. Du, C.Z. Huang, Wang, X. Meng, G. Chen, J. Appl. Phys. 102, 113906 (2007)

    Article  Google Scholar 

  32. D. Chen, H. Quan, X. Luo, S. Luo. Scr. Mater. 76, 1 (2014)

    Article  Google Scholar 

  33. P. Vaquerio, M.P. Crosnier-Lopez, M.A.L. Quintela, J. Solid State Chem 126, 161 (1996)

    Article  Google Scholar 

  34. Y. Yanmin, J. Jing, L. Liangchao, X. Yunlong, J. Rare Earths 25, 228 (2007)

    Article  Google Scholar 

  35. M. Dekun, S. Huang, L. Zhang, Chem. Phys. Lett. 462, 96 (2008)

    Article  Google Scholar 

  36. J. Cuda, T. Kohout, J. Filip, J. Tucek, A. Kosterov, J. Haloda, R. Skala, E. Santala, I. Medrik, R. Zboril, Am. Mineral. 98, 1550 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors M. Girish gratefully acknowledges the University Grants Commission (UGC), New Delhi, India for the financial support under UGC-BSR Research Fellowship Scheme. The authors would like to thank the UGC-DAE Consortium for Scientific Research, Indore Centre, India for providing the AFM and Raman facilities. In addition, R.S gratefully acknowledges the UGC, New Delhi, India for the financial support under Major Research Project (Ref.: F.No.42–818/2013(SR), dt.22.03.2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girish, M., Dhandayuthapani, T., Sivakumar, R. et al. Substrate temperature and molar ratio induced changes on the properties of nebulized spray deposited MnS films. J Mater Sci: Mater Electron 28, 6741–6753 (2017). https://doi.org/10.1007/s10854-017-6370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6370-3

Keywords

Navigation