Advertisement

Effect of NH4F additive on purification of AlN ceramics

  • Dandan Wang
  • Chuanbin Wang
  • Meijuan LiEmail author
  • Qiang Shen
  • Lianmeng Zhang
Article

Abstract

In order to overcome the purification difficulty of aluminum nitride (AlN) ceramics, the sintering of AlN ceramics with ammonium fluoride (NH4F) as an additive had been studied. The results demonstrate that the addition of NH4F evidently affects the phase compositions, the microstructure of grains and the contents of oxygen and nitrogen in the AlN sintered samples. NH4F not only removes oxygen out of AlN grains but also reduces the total oxygen content in AlN ceramics. It is found that relatively high purity of AlN can be acquired when the molar ratio of NH4F/O (oxygen element in raw AlN powder) increases to 0.8. With adequate amount of NH4F, the Al–O–N phases are removed. SEM and TEM results show the hexagonal structures of AlN grains with clean triple-grain junctions. The oxygen content decreases to 0.55 wt% and nitrogen content increases to 33.7 wt%. Thermodynamic analysis illustrates the oxygen removing effects of NH4F by the reaction of NH3 and Al2O3, which inhibits the formation of Al–O–N. NH4F should be at least 2/3 of the oxygen content.

Keywords

Al2O3 Sintered Sample NH4F Aluminum Nitride Gibbs Free Energy Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51521001). The authors would like to thank Dr. J. Li for her excellent TEM work.

References

  1. 1.
    L.M. Sheppard, Am. Ceram. Soc. Bull. 69, 1801 (1990)Google Scholar
  2. 2.
    G. Wu, Y. Wang, K. Wang, A. Feng, RSC Adv. 6, 102542 (2016)CrossRefGoogle Scholar
  3. 3.
    C. Pan, K. Kou, G. Wu, Y. Zhang, Y. Wang, J. Mater. Sci. Mater. Electron 27, 286 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Hirano, K. Kato, T. Isobe, T. Hirano, J. Mater. Sci. 28, 4725 (1993)CrossRefGoogle Scholar
  5. 5.
    S. Kume, M. Yasuoka, N. Omura, K. Watar, J. Am. Ceram. Soc. 88, 3229 (2005)CrossRefGoogle Scholar
  6. 6.
    G. Wu, Y. Chen, Q. Xie, Z. Jia, F. Xiang, H. Wu, Mater. Lett 144, 157 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, K. Kou, G. Wu, L. Zhuo, J. Li, Polymer 77, 354 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Muellner, E. Melnik, G. Koppitsch, R. Hainberger, Procedia Eng. 120, 578 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Chem. Eur. J. 22, 8864 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, K. Kou, W. Zhao, G. Wu, F. Han, RSC Adv. 5, 99313 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, X. Li, J. Alloys Compd. 685, 8 (2016)CrossRefGoogle Scholar
  12. 12.
    K.M. Taylor, C. Lenie, J. Electrochem. Soc 107, 308 (1960)CrossRefGoogle Scholar
  13. 13.
    M. Medraj, Y. Baik, W.T. Thompson, R.A.L. Drew, J. Mater. Process. Technol. 161, 415 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Li, L. Zhang, Q. Shen, M.T. Li Yu, J. Mater. Sci. 41, 7934 (2006)CrossRefGoogle Scholar
  15. 15.
    H.J. Lee, S.W. Kim, S.S. Ryu, Int. J. Refract. Met. Hard Mater. 53, 46 (2015)CrossRefGoogle Scholar
  16. 16.
    Q. Shen, Z. Wei, M. Li, L. Zhang, Key Eng. Mater. 352, 227 (2007)CrossRefGoogle Scholar
  17. 17.
    L. Qiao, H. Zhou, K. Chen, R. Fu, J. Eur. Ceram. Soc. 23, 1517 (2003)CrossRefGoogle Scholar
  18. 18.
    H.M. Lee, D.K. Kim, J. Eur. Ceram. Soc. 34, 3627 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Termoss, M. Bechelany, B. Toury, A. Brioude, S. Bernard, D. Cornu, P. Miele, J. Eur. Ceram. Soc. 29, 857 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Tomohiro, T. Junichi, W. Toru, K. Katsutoshi, M. Takeshi, K. Mackenzie, J. Am. Ceram. Soc. 89, 171 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Tsuchida, Y. Takeshita, A. Yamane, A. Kato, J. Ceram. Assoc. Jpn. 95, 1198 (1987)CrossRefGoogle Scholar
  22. 22.
    T. Sakurai, Y. Miyamoto, J. Jpn. Soc. Powder Powder Metall. 52, 757 (2005)CrossRefGoogle Scholar
  23. 23.
    C. Lin, S. Chung, J. Mater. Res. 16, 2200 (2001)CrossRefGoogle Scholar
  24. 24.
    J.W. Mccauley, N.D. Corbin, J. Am. Ceram. Soc. 62, 476 (2006)CrossRefGoogle Scholar
  25. 25.
    T. Asaka, T. Kudo, H. Banno, S. Funahashi, K. Fukuda, Powder Diffr. 28, 171 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Asaka, H. Banno, S. Funahashi, N. Hirosaki, J. Solid State Chem. 204, 21 (2013)CrossRefGoogle Scholar
  27. 27.
    I. Barin, F. Sauert, E. Schultze-Rhonhof, S. Wang, Thermochemical Data of Pure Substance, 3rd edn, Part VII. (VCH Verlagsgesellschaft mbH, Weinheim, 1995), pp. 38–1088CrossRefGoogle Scholar
  28. 28.
    Y. Wang, T. Lu, Y. Yu, J. Qi, J. Wen, H. Wang, L. Xiao, Z. Yang, J. Yu, Y. Wen, N. Wei, Rare Met. Mater. Eng. 38, 48 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dandan Wang
    • 1
  • Chuanbin Wang
    • 1
  • Meijuan Li
    • 2
    Email author
  • Qiang Shen
    • 1
  • Lianmeng Zhang
    • 1
  1. 1.State Key Lab of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations