Skip to main content
Log in

Visible light driven photodegradation of Rhodamine B using cysteine capped ZnO/GO nanocomposite as photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The cysteine capped ZnO/graphene oxide (CCZG) composite was successfully synthesized by co-precipitation method. The as synthesized CCZG was characterized by X-ray diffraction, diffused reflectance spectra, scanning electron microscopy, transmission electron microscope, Fourier transform-infra red spectral studies. The photocatalytic result reveals that the CCZG composite exhibited enhanced photocatalytic activity towards degradation of Rhodamine B (RhB) under compact fluorescent lamp (CFL) light irradiation. It is found that increase the graphene oxide content in the composite increases the photocatalytic activity which is higher than bare CCZ. The improved photocatalytic activity reduces the recombination of photogenerated charges and high dye adsorption ability of the composites. Further the mineralization of RhB dye has been confirmed by TOC analysis. A mechanism was also proposed for the degradation of RhB by CCZG under CFL light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Li, X. Hu, C. Liu, C. Tang, X. Wang, S. Luo, Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation. J. Mol. Catal. A 425, 124–135 (2016)

    Article  Google Scholar 

  2. N.S. Mutamim, Z.Z. Noor, M.A. Hassan, G. Olsson, Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination 305, 1–1 (2012)

    Article  Google Scholar 

  3. B. Vellaichamy, P. Periakaruppan, Ag nanoshell catalyzed dedying of industrial effluents. RSC Adv. 6, 31653–31660 (2016)

    Article  Google Scholar 

  4. N.S. Sanjini, S. Velmathi, Photocatalytic degradation of Rhodamine B by mesoporous Ti-KIT-6 under UV light and solar light irradiation. J. Porous. Mater. 22, 1549–1558 (2015)

    Article  Google Scholar 

  5. E.S. Aazam, R.M. Mohamed, Environmental remediation of Direct Blue dye solutions by photocatalytic oxidation with cuprous oxide. J. Alloys Compd. 577, 550–555 (2013)

    Article  Google Scholar 

  6. M. Xu, J. Guo, Y. Cen, X. Zhong, W. Cao, G. Sun, Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int. J. Syst. Evol. Microbiol. 55, 363–368 (2005)

    Article  Google Scholar 

  7. C.X.H. Su, L.W. Low, T.T. Teng, Y.S. Wong, Combination and hybridisation of treatments in dye wastewater treatment: a review. J. Environ. Chem. Eng. 4, 3618–3631 (2016)

    Article  Google Scholar 

  8. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83, 769–776 (2008)

    Article  Google Scholar 

  9. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)

    Article  Google Scholar 

  10. M. Krishna Kumar, P. Deepak Raj, K. Jeyadheepan, M. Sridharan, Mater. Today 3, 1525–1530 (2016)

    Article  Google Scholar 

  11. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)

    Article  Google Scholar 

  12. M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, S.S. Hossain, Synthesis of graphene. Int. Nano Lett. 6, 65–83 (2016)

    Article  Google Scholar 

  13. L. Zhong, K. Yun, Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties. Int. J. Nanomed. 10, 79 (2015)

    Google Scholar 

  14. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 101, 382–387 (2011)

    Article  Google Scholar 

  15. Y. Hu, H.J. Chen, Preparation and characterization of nanocrystalline ZnO particles from a hydrothermal process. J. Nanopart. Res. 10, 401–407 (2008)

    Article  Google Scholar 

  16. A.F. Shojaei, K. Tabatabaeian, M.A. Zanjanchi, H.F. Moafi, N. Modirpanah, Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol. J. Chem. Sci. 127, 481–491 (2015)

    Article  Google Scholar 

  17. S. Mukasyan, P. Dinka, Novel approaches to solution-combustion synthesis of nanomaterials. Int. J. Self Propag. High Temp. Synth. 16, 23–35 (2007)

    Article  Google Scholar 

  18. K.G. Chandrappa, T.V. Venkatesha, K. Vathsala, C. Shivakumara, A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles. J. Nanopart. Res. 12, 2667–2678 (2010)

    Article  Google Scholar 

  19. N. Mir, M. Rakhshanipour, A. Heidari, A.A. Mir, M. Salavati-Niasari, Synthesis and characterization of ZnO nanohemispheres via solution-phase thermal decomposition and its comparison with the solid-phase approach. J. Ind. Eng. Chem. 21, 884–888 (2015)

    Article  Google Scholar 

  20. M. Zobel, H. Chatterjee, G. Matveeva, U. Kolb, R.B. Neder, Room-temperature sol-gel synthesis of organic ligand-capped ZnO nanoparticles. J. Nanopart. Res. 17, 1–11 (2015)

    Article  Google Scholar 

  21. J. Luo, Q. Liu, Y. Zhang, W. Zhang, Z. Feng, P. Hu, Solvothermal synthesis of ZnO nanoparticles at low temperatures as cathode buffer layers for polymer solar cells with an inverted device structure. J. Mater. Sci. 27, 10650–10657 (2016)

    Google Scholar 

  22. T. Krishnakumar, R. Jayaprakash, D.S. Raj, N. Pinna, V.N. Singh, A.R. Phani, G. Neri, Microwave-assisted synthesis, characterization and ammonia sensing properties of polymer-capped star-shaped zinc oxide nanostructures. J. Nanopart. Res. 13, 3327–3334 (2011)

    Article  Google Scholar 

  23. S. Labib, Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3. J. Saudi Chem. Soc. (2015). doi:10.1016/j.jscs.2015.11.003

    Google Scholar 

  24. S. Vempati, A. Celebioglu, T. Uyar, Defect related emission versus intersystem crossing: blue emitting ZnO/graphene oxide quantum dots. Nanoscale 7, 16110–16118 (2015)

    Article  Google Scholar 

  25. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Synthesis, characterization and catalytic activity of co-doped Ag–Au–ZnO for MB dye degradation under UV-A light. Mater. Sci. Semicond. Process. 22, 83–91 (2014)

    Article  Google Scholar 

  26. R. Paul, R.N. Gayen, S. Biswas, S.V. Bhat, R. Bhunia, Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv. 6, 61661–61672 (2016)

    Article  Google Scholar 

  27. Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Cryst. Growth Des. 8, 3010–3018 (2008)

    Article  Google Scholar 

  28. K. Huang, Y.H. Li, S. Lin, C. Liang, H. Wang, C.X. Ye, Y.J. Wang, R. Zhang, D.Y. Fan, H.J. Yang, Y.G. Wang, A facile route to reduced graphene oxide–zinc oxide nanorod composites with enhanced photocatalytic activity. Powder Technol. 257, 113–119 (2014)

    Article  Google Scholar 

  29. T. Lv, L.K. Pan, X.J. Liu, T. Lu, G. Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO–reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509, 10086–10091 (2011)

    Article  Google Scholar 

  30. H. Zhang, S. Lu, W. Xu, F. Yuan, First-principles study of electronic structures and photocatalytic activity of low-Miller-index surfaces of ZnO. J. Appl. Phys. 113, 4903 (2013)

    Google Scholar 

  31. K. Vijayalakshmi, D. Sivaraj, Synergistic antibacterial activity of barium doped TiO2 nanoclusters synthesized by microwave processing. RSC Adv. 6, 9663–9671 (2016)

    Article  Google Scholar 

  32. M.K. Kavitha, P. Gopinath, H. John, Reduced graphene oxide–ZnO self-assembled films: tailoring the visible light photoconductivity by the intrinsic defect states in ZnO. Phys. Chem. Chem. Phys. 17, 14647–14655 (2015)

    Article  Google Scholar 

  33. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (VI). Chem. Eng. J. 183, 238–243 (2012)

    Article  Google Scholar 

  34. J. He, C. Niu, C. Yang, J. Wang, X. Su, Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. RSC Adv. 4, 60253–60259 (2014)

    Article  Google Scholar 

  35. A. Khataee, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, M. Safarpour, H. Gholipour Ranjbar, S.W. Joo, Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation. Ind. Eng. Chem. Res. 53, 1924–1932 (2014)

    Article  Google Scholar 

  36. Z. Yang, J. Li, F. Cheng, Z. Chen, X. Dong, BiOBr/protonated graphitic C3N4 heterojunctions: intimate interfaces by electrostatic interaction and enhanced photocatalytic activity. J. Alloys Compd. 634, 215–222 (2015)

    Article  Google Scholar 

  37. K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)

    Article  Google Scholar 

  38. B. Li, T. Liu, Y. Wang, Z. Wang, ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci. 377, 114–121 (2012)

    Article  Google Scholar 

  39. S.V. Nipane, P.V. Korake, G.S. Gokavi, Graphene-zinc oxide nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation. Ceram. Int. 41, 4549–4557 (2015)

    Article  Google Scholar 

  40. C. Zhang, J. Zhang, Y. Su, M. Xu, Z. Yang, Y. Zhang, ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G. Physica E 56, 251–255 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sharmila Lydia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 546 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steplin Paul Selvin, S., Radhika, N., Borang, O. et al. Visible light driven photodegradation of Rhodamine B using cysteine capped ZnO/GO nanocomposite as photocatalyst. J Mater Sci: Mater Electron 28, 6722–6730 (2017). https://doi.org/10.1007/s10854-017-6367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6367-y

Keywords

Navigation