Skip to main content
Log in

Growth of TiO2 nanotubes on the Ti foil by anodizing method used in the flexible dye-sensitized solar cell in presence of three counter electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, flexible dye-sensitized solar cells were made by using different counter electrodes. The working electrode was fabricated from a simple anodizing method. TiO2 film was grown on the Ti foil as a flexible substrate. uniUsing Ti foil for the flexible solar cell helped us to sinter the grown TiO2 nanotubes at high temperature that is a serious challenge for the flexible plastic substrates. To study the effect of counter electrodes on the solar cell performance, three different counter electrodes namely platinum (Pt), multi-walled carbon nanotube (MWCNT) and graphene were served. The results showed the Pt was the best counter electrode due to its high catalytic activity and nobility. MWCNT had the better activity than the graphene due to its higher conductivity to electron transfer. The crystallinity of the TiO2–Ti electrode was examined by X-ray diffraction pattern. The TiO2 electrode and counter electrodes surfaces were studied by scanning electron microscopy. Also, the optical properties of the surface were obtained by ultra violet–visible spectroscopy. Finally, The solar cells performance was investigated by J–V curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’regan, M. Gratzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. Y. Rui, Y. Wang, Q. Zhang, Q. Chi, M. Zhang, H. Wang, Y. Li, C. Hou, Appl. Surf. Sci. 380, 210 (2016)

    Article  Google Scholar 

  3. S.K. Balasingam, M.G. Kang,Chem. Commun. 49, 11457 (2013)

    Article  Google Scholar 

  4. H.C. Weerasinghe, F. Huang, Y.-B. Cheng, Nano Energy 2, 174 (2013)

    Article  Google Scholar 

  5. T. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale, A. Di Carlo, J. Mater. Chem. A 2, 10788 (2014)

    Article  Google Scholar 

  6. S. Ito, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, Chem. Commun. 4004 (2006). doi:10.1039/b608279c

  7. K. Fan, T. Peng, B. Chai, J. Chen, K. Dai, Electrochim. Acta 55, 5239 (2010)

    Article  Google Scholar 

  8. Y. Jun, J. Kim, M.G. Kang, Sol. Energy Mater. Sol. Cells 91, 779 (2007)

    Article  Google Scholar 

  9. K.-M. Lee, L.-C. Lin, V. Suryanarayanan, C.-G. Wu, J. Power Sources 269, 789 (2014)

    Article  Google Scholar 

  10. Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, M. Huang, Electrochim. Acta 55, 4573 (2010)

    Article  Google Scholar 

  11. J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Energy Environ. Sci. 5, 5750 (2012)

    Article  Google Scholar 

  12. W.-Q. Wu, Y.-F. Xu, H.-S. Rao, C.-Y. Su, D.-B. Kuang, J. Phys. Chem. C 118, 16426 (2014)

    Article  Google Scholar 

  13. T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Sol. Energy Mater. Sol. Cells 94, 812 (2010)

    Article  Google Scholar 

  14. J. Shao, F. Liu, W. Dong, R. Tao, Z. Deng, X. Fang, S. Dai, Mater. Lett. 68, 493 (2012)

    Article  Google Scholar 

  15. X. Yin, Z. Xue, L. Wang, Y. Cheng, B. Liu, ACS Appl. Mater. Interfaces 4, 1709 (2012)

    Article  Google Scholar 

  16. K. Fan, C. Gong, T. Peng, J. Chen, J. Xia, Nanoscale 3, 3900 (2011)

    Article  Google Scholar 

  17. X.-L. He, G.-J. Yang, C.-J. Li, M. Liu, S.-Q. Fan, J. Power Sources 280, 182 (2015)

    Article  Google Scholar 

  18. C. Kim, S. Kim, M. Lee, Appl. Surf. Sci. 270, 462 (2013)

    Article  Google Scholar 

  19. W. Liu, H. Lu, M. Zhang, M. Guo, Appl. Surf. Sci. 347, 214 (2015)

    Article  Google Scholar 

  20. H. Li, Q. Zhao, H. Dong, Q. Ma, W. Wang, D. Xu, D. Yu, Nanoscale 6, 13203 (2014)

    Article  Google Scholar 

  21. D. Regonini, C. Bowen, A. Jaroenworaluck, R. Stevens, Mater. Sci. Eng. R Reports 74, 377 (2013)

    Article  Google Scholar 

  22. D. Regonini, F. Clemens, Mater. Lett. 142, 97 (2015)

    Article  Google Scholar 

  23. W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, Z. Zou, Adv. Funct. Mater. 22, 1215 (2012)

    Article  Google Scholar 

  24. U.J. Kim, C.A. Furtado, X. Liu, G. Chen, P.C. Eklund, J. Am. Chem. Soc. 127, 15437 (2005)

    Article  Google Scholar 

  25. X. Chen, Q. Tang, Z. Zhao, X. Wang, B. He, L. Yu, Chem. Commun. 51, 1945 (2015)

    Article  Google Scholar 

  26. Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G.S. Zakharova, W. Chen, RSC Adv. 4, 45592 (2014)

    Article  Google Scholar 

  27. J. An, W. Guo, T. Ma, Small 8, 3427 (2012)

    Article  Google Scholar 

  28. L. Song, Y. Guan, P. Du, Y. Yang, F. Ko, J. Xiong, Sol. Energy Mater. Sol. Cells 147, 134 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Jahangiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabet, M., Jahangiri, H. Growth of TiO2 nanotubes on the Ti foil by anodizing method used in the flexible dye-sensitized solar cell in presence of three counter electrodes. J Mater Sci: Mater Electron 28, 6566–6571 (2017). https://doi.org/10.1007/s10854-017-6346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6346-3

Keywords

Navigation