Skip to main content
Log in

Sintering behavior, phase structure and adjustable microwave dielectric properties of Li2O–MgO–nTiO2 ceramics (1 ≤ n ≤ 5)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li2O–MgO–nTiO2 (1 ≤ n ≤ 5) ceramics were prepared by a solid state reaction method. The sintering behavior, phase evolution, microstructure and microwave dielectric properties of ceramics were investigated. With increasing n value, the microstructure of ceramics changed from a porous structure to the compact structure. Bulk density, relative permittivity (ε r ) and temperature coefficient of resonator frequency (τ f ) firstly increased, reached a max value and then decreased with increasing n values. Q × f value first decreased, then increased and finally decreased again. When n = 2, Li2O–MgO–2TiO2 systems presented good microwave dielectric properties with Q × f value of 44,914 GHz, ε r of 20.8 and τ f of −10.15 ppm/oC and low density of 3.33 g/cm3. When n = 3, Li2O–MgO–3TiO2 systems showed better comprehensive performances with sintering temperature of 1050 °C, Q × f value of 48,513 GHz, ε r of 25.5, τ f of 1.6 ppm/oC and low density of 3.40 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Sumesh, S.M. Thomas, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Eur. Ceram. Soc. 30(12), 2585–2592 (2010)

    Article  Google Scholar 

  2. W. Lei, W.Z. Lu, J.H. Zhu, Modification of ZnAl2O4-based low-permittivity microwave dielectric ceramics by adding 2MO–TiO2 (M = Co, Mg, and Mn). J. Am. Ceram. Soc. 91(6), 1958–1961 (2008)

    Article  Google Scholar 

  3. Y.C. Chen, H.X. Liu, C.H. Li, Microstructures and microwave dielectric properties of (1–y)Nd1–x Yb x (Mg0.5Sn0.5)O3yCa0.8Sr0.2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 25(4), 1–6 (2014)

    Google Scholar 

  4. H.F. Zhou, J.Z. Gong, N. Wang, X.L. Chen, New microwave dielectric system of Li4x Mg3(1–x)Al6(1–x)Ti5x O12 with adjustable thermal stability and high quality factor. J. Mater. Sci. Mater. Electron. 27(3), 2557–2563 (2016)

    Article  Google Scholar 

  5. D. Zhou, H. Wang, X. Yao, L.X. Pang, Microwave dielectric properties of low temperature firing Bi2Mo2O9 ceramic. J. Am. Ceram. Soc. 91(10), 3419–3422 (2008)

    Article  Google Scholar 

  6. C.L. Huang, Y.W. Tseng, J.Y. Chen, C.L. Huang, High-Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications. J. Eur. Ceram. Soc. 32(12), 3287–3295 (2012)

    Article  Google Scholar 

  7. G.H. Chen, M.Z. Hou, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10(3), 492–501 (2013)

    Article  Google Scholar 

  8. K.C. Li, H. Wang, H.F. Zhou, Silver co-firable ZnTiNb2O8 microwave dielectric ceramics with Li2O–ZnO–B2O3 glass additive. Int. J. Appl. Ceram. Technol. 7(7), E144–E150 (2010)

    Article  Google Scholar 

  9. Y.C. Lee, C.S. Chiang, Y.L. Huang, Microwave dielectric properties and microstructures of Nb2O5–Zn0.95Mg0.05TiO3+0.25TiO2 ceramics with Bi2O3 addition. J. Eur. Ceram. Soc. 30(4), 963–970 (2010)

    Article  Google Scholar 

  10. H. Wu, P.K. Davies, Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3 microwave dielectrics: III. Effect of the muffling environment. J. Am. Ceram. Soc. 89(7), 2264–2270 (2006)

    Google Scholar 

  11. S.H. Wee, D.W. Kim, Microwave dielectric properties of low-fired ZnNb2O6 ceramics with BiVO4 addition. J. Am. Ceram. Soc. 87(5), 871–874 (2004)

    Article  Google Scholar 

  12. I. Molodetsky, P.K. Davies, Effect of Ba(Y1/2Nb1/2)O3 and BaZrO3 on the cation order and properties of Ba(Co1/3Nb2/3)O3 microwave ceramics. J. Eur. Ceram. Soc. 21(15), 2587–2591 (2001)

    Article  Google Scholar 

  13. S.P. Wu, D.F. Chen, Y.X. Mei, Synthesis and microwave dielectric properties of Ca3SnSi2O9 ceramics. J. Alloy Compd. 521(2), 8–11 (2012)

    Article  Google Scholar 

  14. A. Friederich, X. Zhou, M. Sazegar, The influence of processing on the microstructure and the microwave properties of Co-F-codoped barium strontium titanate thick-films. J. Eur. Ceram. Soc 32(4), 875–882 (2012)

    Article  Google Scholar 

  15. A. Cheol-Woo, N. Sahn, Microstructure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 ceramics. Jpn. J. Appl. Phys. 41(8), 5277–5280 (2002)

    Google Scholar 

  16. H. Zhuang, Z. Yue, S. Meng, F. Zhao, Low-temperature sintering and microwave dielectric properties of Ba3(VO4)2–BaWO4 ceramic composites. J. Am. Ceram. Soc. 91(11), 3738–3741 (2008)

    Article  Google Scholar 

  17. Y. Lv, R.Z. Zuo, Effect of the B2O3 addition on the sintering behavior and microwave dielectric properties of Ba3(VO4)2–Zn1.87SiO3.87 composite ceramics. Ceram. Int. 39(3), 2545–2550 (2013)

    Article  Google Scholar 

  18. N.X. Xu, J.H. Zhou, H. Yang, Q.L. Zhang, M.J. Wang, Structural evolution and microwave dielectric properties of MgO-LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40(9), 15191–15198 (2014)

    Article  Google Scholar 

  19. X. Zhou, M. Sazegar, F. Stemme, Correlation of the microstructure and microwave properties of Ba0.6Sr0.4TiO3 thick-films. J. Eur. Ceram. Soc 32(16), 4311–4318 (2012)

    Article  Google Scholar 

  20. A. Manan, Y. Iqbal, Influence of Sm substitution on the phase, microstructure and microwave dielectric properties of SrLa4Ti5O17. J. Mater. Sci. Mater. Electron. 22(12), 1848–1854 (2011)

    Article  Google Scholar 

  21. S.Q. Yu, B. Tang, S. Zhang, The effect of Mn addition on phase development, microstructure and microwave dielectric properties of ZrTi2O6–ZnNb2O6 ceramics. Mater. Lett. 80(8), 124–126 (2012)

    Article  Google Scholar 

  22. W.A. Adi, A. Manaf, Microstructure and phase analysis of La0.8Ba0.2Ti x Mn(1–x)O3 system for microwave absorber material (x = 0–0.7). Adv. Mater. Res. 789, 97–100 (2013)

    Article  Google Scholar 

  23. C.W. Liu, N.X. Wu, Y.L. Mao, Phase formation, microstructure and microwave dielectric properties of Li2SnO3–MO (M = Mg, Zn) ceramics. J. Electroceram. 32(2–3), 199–204 (2013)

    Google Scholar 

  24. J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures: (1−x)Li2TiO3 + xMgO system (0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 30(2), 325–330 (2010)

    Article  Google Scholar 

  25. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89(11), 3441–3445 (2006)

    Article  Google Scholar 

  26. G.G. Yao, P. Liu, H.W. Zhang, Microwave dielectric properties of Li2MgTi3O8 ceramics produced by reaction-sintering method. J. Mater. Sci. Mater. Electron. 24(4), 1128–1131 (2013)

    Article  Google Scholar 

  27. A.E. Paladino, Temperature-compensated MgTi2O5–TiO2 dielectrics. J. Am. Ceram. Soc. 54(3), 168–169 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11464009 and 11364012), Natural Science Foundation of Guangxi (Nos. 2015GXNSFDA139033, 2014GXNSFAA118312, 2013GXNSFAA019291 and 2014GXNSFAA118326), Research Start-up Funds Doctor of Guilin University of Technology (Nos. 002401003281 and 002401003282) and Project of Outstanding Young Teachers׳ Training in Higher Education Institutions of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Tan, X., Huang, J. et al. Sintering behavior, phase structure and adjustable microwave dielectric properties of Li2O–MgO–nTiO2 ceramics (1 ≤ n ≤ 5). J Mater Sci: Mater Electron 28, 6475–6480 (2017). https://doi.org/10.1007/s10854-017-6334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6334-7

Keywords

Navigation