Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect

  • Raghvendra Singh YadavEmail author
  • Ivo Kuřitka
  • Jarmila Vilcakova
  • Jaromir Havlica
  • Jiri Masilko
  • Lukas Kalina
  • Jakub Tkacz
  • Miroslava Hajdúchová
  • Vojtěch Enev


In this work, CuFe2O4 nanoparticles were synthesized by natural source of glucose and fructose (i.e., honey)—mediated sol–gel auto-combustion method. Grain size, cation distribution and crystal phase were further tuned through annealing at higher temperature 500, 700, 900 and 1100 °C. The structural investigation was performed using powder X-ray Diffraction, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and X-ray Photoelectron Spectroscopy. X-ray diffraction study confirmed the phase transformation from cubic to tetragonal as a function of annealing temperature. Magnetic properties were investigated by using vibrating sample magnetometer under an applied magnetic field of 10 kOe at room temperature. The highest value of saturation magnetization (Ms) was 26 emu/g for ferrite nanoparticles annealed at 1100 °C, whereas the lowest value was 11 emu/g for annealed at 700 °C. The highest and lowest coercivity (Hc) was 1389 and 65 Oe for ferrite nanoparticles annealed at 900 and 1100 °C, respectively. Detailed study of modulus and impedance spectroscopy revealed the contribution of grain and grain boundary on electrical transport mechanism and relaxation process. Further, dependence of relaxation time, resistance and capacitance at grain and grain boundary on grain size, cation distribution and annealing temperature was noticed. The asymmetry of peak in imaginary part of modulus spectra indicates that the relaxation process is non-Debye type. At lower frequency, ac conductivity is frequency independent, whereas, at high frequency, it follows an apparent power law, σ(ω) α ωs. Dielectric parameters (real and imaginary part, dielectric loss) with variation of frequency (1 Hz to 10 MHz) are investigated and dependence with frequency and annealing temperature is observed.


Ferrite Dielectric Loss Octahedral Site Cation Distribution Ferrite Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).


  1. 1.
    A. Dandia, A. K. Jain, S. Sharma, CuFe2O4 nanoparticles as a highly efficient and magnetically recoverable catalyst for the synthesis of medicinally privileged spiropyrimidine scaffolds. RSC Adv. 3, 924–2934 (2013).CrossRefGoogle Scholar
  2. 2.
    Z. Huang, Y. Zhu, S. Wang, G. Yin, Controlled growth of aligned arrays of Cu-ferrite nanorods. Cryst. Growth Des. 6(8), 1931–1935 (2006)CrossRefGoogle Scholar
  3. 3.
    R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, A. Gedanken, Investigations on the structural, morphological, electrical, and magnetic properties of CuFe2O4-NiO nanocomposites. Chem. Mater. 20, 429–439 (2008)CrossRefGoogle Scholar
  4. 4.
    A.R. Tehrani-Bagha, M. Gharagozlou, F. Emami, Catalytic wet peroxide oxidation of a reactive dye by magnetic copper ferrite nanoparticles. J. Environ. Chem. Eng. 4, 1530–1536 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind. Eng. Chem. Res. 51, 11700–11709 (2012)CrossRefGoogle Scholar
  6. 6.
    J.A. Gomes, M.H. Sousa, G.J. da Silva, F.A. Tourinho, J. Mestnik-Filho, R. Itri, G.M. de Azevedo, J. Depeyrot, Cation distribution in copper ferrite nanoparticles of ferrofluids: a synchrotron XRD and EXAFS investigation. J. Magn. Magn. Mater. 300, e213–e216 (2006)CrossRefGoogle Scholar
  7. 7.
    B. Nakhjavan, M.N. Tahir, M. Panthofer, H. Gao, T.D. Schladt, T. Gasi, V. Ksenofontov, R. Branscheid, S. Weber, U. Kolb, L.M. Schreiber, W. Tremel, Synthesis, characterization and functionalization of nearly mono-disperse copper ferrite CuxFe3–xO4 nanoparticles. J. Mater. Chem. 21, 6909–6915 (2011)CrossRefGoogle Scholar
  8. 8.
    V. Manikandan, A. Vanitha, E. Ranjith Kumar, S. Kavita, Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 426, 11–17 (2017)CrossRefGoogle Scholar
  9. 9.
    U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites. J. Magn. Magn. Mater. 407, 60–68 (2016)CrossRefGoogle Scholar
  10. 10.
    N. Kannapiran, A. Muthusamy, P. Chitra, S. Anand, R. Jayaprakash, Poly(o-phenylenediamine)/NiCoFe2O4 nanocomposites: Synthesis, characterization, magnetic and dielectric properties. J. Magn. Magn. Mater. 423, 208–216 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Ali, J. Iqbal, T. Jana, N. Ahmad, I. Ahmad, D. Wan, Enhancement of microwaves absorption properties of CuFe2O4 magnetic nanoparticles embedded in MgO matrix. J. Alloys Compd. 696, 711–717 (2017)CrossRefGoogle Scholar
  12. 12.
    P.S. Das, G.P. Singh, Structural, magnetic and dielectric study of Cu substituted NiZn ferrite nanorod. J. Magn. Magn. Mater. 401, 918–924 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  15. 15.
    G. Wu, Y. Cheng, F. Xiang, Z. Jia, Q. Xie, G. Wu, H. Wu, Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2, Mater. Sci. Semicond. Process. 41, 6–11 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Pan, K. Kou, G. Wu, Y. Zhang, Y. Wang, Fabrication and characterization of AlN/PTFE composites with low dielectric constant and high thermal stability for electronic packaging. J. Mater. Sci. 27, 286–29 (2016)Google Scholar
  17. 17.
    S.J. Stewart, M.J. Tueros, G. Cernicchiaro, R.B. Scorzelli, Magnetic size growth in nanocrystalline copper ferrite. Solid State Commun. 129, 347–351 (2004)CrossRefGoogle Scholar
  18. 18.
    K.J. Kima, J.H. Lee, S.H. Lee, Magneto-optical investigation of spinel ferrite CuFe2O4: observation of Jahn–Teller effect in Cu2+ ion. J. Magn. Magn. Mater. 279, 173–177 (2004)CrossRefGoogle Scholar
  19. 19.
    D. Prabhu, A. Narayanasamy, K. Shinoda, B. Jeyadeven, J.-M. Greneche, K. Chattopadhyay, Grain size effect on the phase transformation temperature of nanostructured CuFe2O4. J. Appl. Phys. 109, 013532 (2011)CrossRefGoogle Scholar
  20. 20.
    M.A. Amer, T. Meaz, A. Hashhash, S. Attalah, F. Fakhry, Structural phase transformations of as-synthesized Cu-nanoferrites by annealing process. J. Alloys Compd. 649, 712–720 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Salavati-Niasari, T. Mahmoudi, M. Sabet, S.M. Hosseinpour-Mashkani, F. Soofivand, F. Tavakol, Synthesis and characterization of copper ferrite nanocrystals via coprecipitation. J. Clust. Sci. 23, 1003–1010 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Paramasivan, P. Venkatesh, Controllable synthesis of CuFe2O4 nanostructures through simple hydrothermal method in the presence of thioglycolic acid. Physica E 84, 258–262 (2016)CrossRefGoogle Scholar
  23. 23.
    E. Solano, L. Perez-Mirabet, F. Martinez-Julian, R. Guzman, J. Arbiol, T. Puig, X. Obradors, R. Yanez, A. Pomar, S. Ricart, J. Ros, Facile and efficient one-pot solvothermal and microwaveassisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles. J Nanopart Res 14, 1034 (2012)CrossRefGoogle Scholar
  24. 24.
    A.C. Hee, M. Mehrali, H.S.C. Metselaar, M. Mehrali, N.A.A. Osman, Comparison of nanostructured nickel zinc ferrite and magnesium copper zinc ferrite prepared by water-in-oil microemulsion. Electron. Mater. Lett. 8, 639–642 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Chauhan, A.K. Shukla, K. Sreenivas, Properties of NiFe2O4 ceramics from powders obtained by auto-combustion synthesis with different fuels. Ceram. Int. 42, 12136–12147 (2016)CrossRefGoogle Scholar
  26. 26.
    R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, Magnetic properties of Co1–xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr. Appl. Phys. 11, 101–108 (2011)CrossRefGoogle Scholar
  28. 28.
    G. Raja, S. Gopinath, R. Azhagu Raj, A.K. Shukla, M.S. Alhoshan, K. Sivakumar, Comparative investigation of CuFe2O4 nano and microstructures for structural, morphological, optical and magnetic properties. Physica E 83, 69–73 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Ansari, A. Sobhani, M. Salavati-Niasari, Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method. J. Magn. Magn. Mater. 410, 27–33 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process. J. Solid State Chem. 213, 57–64 (2014)CrossRefGoogle Scholar
  31. 31.
    R. S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Cation migration-induced crystal phase transformation in copper ferrite nanoparticles and their magnetic property. J. Supercond. Nov. Magn. 29, 759–769 (2016)CrossRefGoogle Scholar
  32. 32.
    D.W. Ball, The chemical composition of honey. J. Chem. Educ. 84, 1643–1646 (2007)CrossRefGoogle Scholar
  33. 33.
    N. Kumari, V. Kumar, S. K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Adv. 5 (2015) 37925–37934.CrossRefGoogle Scholar
  34. 34.
    B.D. Cullity, Introduction to Magnetic Materials, Addison– Wesley, Reading, MA (1972)Google Scholar
  35. 35.
    M. Desai and S. Prasad, N. Venkataramani, I. Samajdar, K.A. Nigam, R. Krishnan Annealing induced structural change in sputter deposited copper ferrite thin films and its impact on magnetic properties. J. Appl. Phys. 91, 2220–2227 (2002)CrossRefGoogle Scholar
  36. 36.
    M.D.P. Silva, F.C. Silva, F.S.M. Sinfrônio, A.R. Paschoal, E.N. Silva, C.W.A. Paschoal, The effect of cobalt substitution in crystal structure and vibrational modes of CuFe2O4 powders obtained by polymeric precursor method. J. Alloys Compd. 584, 573–580 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Verma, A. Kumar, D. Varshney, Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4. Curr. Appl. Phys. 13, 467–473 (2013)CrossRefGoogle Scholar
  38. 38.
    B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis. Dalton Trans. 43, 7930–7944 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Malavasi, P. Galinetto, M.C. Mozzati, C.B. Azzoni, G. Flor, Raman spectroscopy of AMn2O4 (A = Mn, Mg and Zn) spinels. Phys. Chem. Chem. Phys. 4, 3876–3880 (2002)CrossRefGoogle Scholar
  40. 40.
    S. Bhukal, M. Dhiman, S. Bansal, M. K. Tripathi, S. Singhal, Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental and redox catalytic properties for the degradation of methyl orange. RSC Adv. 6, 1360–1375 (2016)CrossRefGoogle Scholar
  41. 41.
    R.S. Melo, F.C. Silva, K.R.M. Moura, A.S. deMenezes, F.S.M. Sinfrônio, Magnetic ferrites synthesised using the microwave-hydrothermal method. J. Magn. Magn. Mater. 381, 109–115 (2015)CrossRefGoogle Scholar
  42. 42.
    S. T. Assar, H. F. Abosheiasha, Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples. J. Magn. Magn. Mater. 374, 264–272 (2015)CrossRefGoogle Scholar
  43. 43.
    H.M. Zaki, H.A. Dawoud, Far-infrared spectra for copper-zinc mixed ferrites. Physica B. 405, 4476 (2010)CrossRefGoogle Scholar
  44. 44.
    K.S. Aneesh Kumar, R.N. Bhowmik, Micro-structural characterization and magnetic study of Ni0.5Fe0.5O4 ferrite synthesized through co-precipitation route at different pH values. Mater. Chem. Phys. 146, 159–169 (2014)CrossRefGoogle Scholar
  45. 45.
    W. Zhang, B. Quan, C. Lee, S.-K. Park, X. Li, E. Choi, G. Diao, Y. Piao, One-step facile solvothermal synthesis of copper ferrite–graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces 7, 2404–2414 (2015)CrossRefGoogle Scholar
  46. 46.
    I. Nedkov, R.E. Vandenberghe, Ts. Marinova, Ph.. Thailhades, T. Merodiiska, I. Avramova, Magnetic structure and collective Jahn–Teller distortions in nanostructured particles of CuFe2O4. Appl. Surf. Sci. 253, 2589–2596 (2006)CrossRefGoogle Scholar
  47. 47.
    D. S. Nikam, S. V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338 (2015)CrossRefGoogle Scholar
  48. 48.
    Ph. Tailhades, C. Villette, A. Rousset, G.U. Kulkarni, K.R. Kannan, C.N.R. Rao, M. Lenglet, Cation migration and coercivity in mixed copper–cobalt spinel ferrite powders. J. Solid State Chem. 141, 56–63 (1998)CrossRefGoogle Scholar
  49. 49.
    E.R. Kumar, P.S.P. Reddy, S. G. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behaviour of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)CrossRefGoogle Scholar
  50. 50.
    C. Murugesan, G. Chandrasekaran, Impact of Gd3+- substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. (2015), DOI: 10.1039/C5RA14351A.
  51. 51.
    J. Parashar, V.K. Saxena, D. Jyoti, Bhatnagar, K.B. Sharma, Dielectric behaviour of Zn substituted Cu nano-ferrites. J. Magn. Magn. Mater. 394, 105–110 (2015)CrossRefGoogle Scholar
  52. 52.
    N. Ponpandian, P. Balaya, A. Narayanasamy, Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys. 14, 3221–3237 (2002)Google Scholar
  53. 53.
    N. Sivakumar, A. Narayanasamy, B. Jeyadevan, R.J. Joseyphus, C. Venkateswaran, Dielectric relaxation behaviour of nanostructured Mn–Zn ferrite. J. Phys. D. 41, 245001 (2008)CrossRefGoogle Scholar
  54. 54.
    Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys. 115, 144106 (2014)CrossRefGoogle Scholar
  55. 55.
    N. Kumari, V. Kumar, S. K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Adv. 5 (2015) 37925.CrossRefGoogle Scholar
  56. 56.
    M. Hashim, R.K. Kotnala, S.E. Shirsath, S.S. Meena, S. Kumar, A. Roy, R.B. Jotania, P. Bhatt, R. Kumar, Influence of Ni2+ substitution on the structural, dielectric and magnetic properties of Cu–Cd ferrite nanoparticles. J. Alloys Compd. 573, 198–204 (2013)CrossRefGoogle Scholar
  57. 57.
    H. S. Aziz, S. Rasheed, R. A. Khan, A. Rahim, J. Nisar, S. M. Shah, F. Iqbal, A. R. Khan, Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv. 6, 6589–6597 (2016)CrossRefGoogle Scholar
  58. 58.
    M. J. Iqbal, R. A. Khan, S. Mizukami, T. Miyazaki, Mossbauer, magnetic and microwave absorption characteristics of substituted W-type hexaferrites nanoparticles. Ceram. Int. 38, 4097–4103 (2012)CrossRefGoogle Scholar
  59. 59.
    S.M. Patange, Sagar E. Shirsath, K.S. Lohar, S.S. Jadhav, Nilesh Kulkarni, K.M. Jadhav, Electrical and switching properties of NiAlxFe2xO4 ferrites synthesized by chemical method. Physica B 406, 663–668 (2011)CrossRefGoogle Scholar
  60. 60.
    S. Verma, J. Chand, M. Singh, Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0.2Mn0.5Ni0.3AlyFe2yO4 ferrites synthesized by citrate precursor method. J. Alloys Compd. 587, 763–770 (2014)CrossRefGoogle Scholar
  61. 61.
    S. Nasri, A. Oueslati, I. Chaabane, M. Gargouri, A C conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound. Ceram. Int. 42,14041–14048 (2016)CrossRefGoogle Scholar
  62. 62.
    R.K. Panda, R. Muduli, S.K. Kar, D. Behera, Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy. J. Alloys Compd. 587, 481–486 (2014)CrossRefGoogle Scholar
  63. 63.
    R.N. Bhowmik, I. Panneer Muthuselvam, Dielectric properties of magnetic grains in CoFe1.95Ho0.05O4 spinel ferrite. J. Magn. Magn. Mater. 335, 64–74 (2013)CrossRefGoogle Scholar
  64. 64.
    S. Narayanan, A.K. Baral, V. Thangadurai, Dielectric characteristics of fast Li ion conducting garnet-type Li5+2xLa3Nb2–xYxO12 (x = 0. 25, 0.5 and 0.75). Phys. Chem. Chem. Phys. DOI: 10.1039/c6cp02287a
  65. 65.
    K. Rasool, M.A. Rafiq, M. Ahmad, Z. Imran, M.M. Hasan, TiO2 nanoparticles and silicon nanowires hybrid device: Role of interface on electrical, dielectric, and photodetection properties. Appl. Phys. Lett. 101, 253104 (2012)CrossRefGoogle Scholar
  66. 66.
    D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Raghvendra Singh Yadav
    • 1
    Email author
  • Ivo Kuřitka
    • 1
  • Jarmila Vilcakova
    • 1
  • Jaromir Havlica
    • 2
  • Jiri Masilko
    • 2
  • Lukas Kalina
    • 2
  • Jakub Tkacz
    • 2
  • Miroslava Hajdúchová
    • 2
  • Vojtěch Enev
    • 2
  1. 1.Centre of Polymer Systems, University InstituteTomas Bata University in ZlínZlínCzech Republic
  2. 2.Materials Research CentreBrno University of TechnologyBrnoCzech Republic

Personalised recommendations