Skip to main content

Advertisement

Log in

Samaria/reduced graphene oxide nanocomposites; sonochemical synthesis and electrochemical evaluation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The advantages of using reduced graphene oxide (RGO) modified with inorganic nanoparticles like the critical improvements they create in electrochemical devices used in energy storage, as well as their catalytic roles and potentials in sensing devices have changed them into a material group of interest. In the light of this importance and regarding the criticality of the synthesis procedure in the preparation of such materials, the current work focuses on the development of a facile route for anchoring samaria nanoparticles on RGO sheets, based on the self-assembly of Sm2O3 nanoparticles on RGO through a sonochemical procedure, in an ultrasonic bath. Products of the method were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM) techniques and it was proven that the distribution of the Sm2O3 nanostructures on the RGO sheets was very uniform. Additionally the electrochemical properties of the synthesized Sm2O3-RGO nanocomposites toward different probes were evaluated through cyclic voltammetry (CV) technique, revealing that at an optimal Sm2O3 loading value the electro-catalytic activity of the nanocomposites was synergistically improved, leading to great impacts on the properties of the electrochemical devices based on the Sm2O3-RGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, S.I. Khondaker, J. Phys. Chem. C 115, 24494 (2011). doi:10.1021/jp206485v

    Article  Google Scholar 

  2. B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Electrochim. Acta 55, 6812 (2010). doi:10.1016/j.electacta.2010.05.086

    Article  Google Scholar 

  3. H. Lv, X. Shen, Z. Ji, K. Chen, G. Zhu, New J. Chem. 38, 2305 (2014). doi:10.1039/C3NJ01261A

    Article  Google Scholar 

  4. A.S. Dezfuli, M.R. Ganjali, P. Norouzi, F. Faridbod J. Materials Chem. B 3, 2362 (2015). doi:10.1039/c4tb01847h

    Article  Google Scholar 

  5. Q. Ling, M. Yang, R.C. Rao et al., Appl. Surf. Sci. 274, 131 (2013). doi:10.1016/j.apsusc.2013.02.129

    Article  Google Scholar 

  6. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano. Energy 1, 107 (2012). doi:10.1016/j.nanoen.2011.11.001

    Article  Google Scholar 

  7. G-y Adachi, N. Imanaka, Chem. Rev. 98, 1479 (1998). doi:10.1021/cr940055h

    Article  Google Scholar 

  8. S. Jafari, F. Faridbod, P. Norouzi et al., Anal. Chim. Acta 895, 80 (2015). doi:10.1016/j.aca.2015.05.055

    Article  Google Scholar 

  9. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, RSC Adv. 5, 46050 (2015). doi:10.1039/C5RA02957K

    Article  Google Scholar 

  10. H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, P. Norouzi, RSC Adv. 6, 51211 (2016). doi:10.1039/C6RA02943D

    Article  Google Scholar 

  11. G.-y. Adachi, N Imanaka, Z.C. Kang, Binary Rare Earth Oxides. (Springer, Netherlands, 2004)

    Google Scholar 

  12. MP Rosynek (1977) Catal. Rev. 16, 111. doi:10.1080/03602457708079635

    Article  Google Scholar 

  13. J.-H. Jhang, A. Schaefer, W. Cartas, S. Epuri, M. Bäumer, J.F. Weaver, J. Phys. Chem. C 117, 21396 (2013). doi:10.1021/jp4074416

    Article  Google Scholar 

  14. S. Tsujimoto, T. Masui, N. Imanaka, Eur. J. Inorg. Chem. 2015, 1524 (2015). doi:10.1002/ejic.201403061

    Article  Google Scholar 

  15. W.C. Chin, K.Y. Cheong, Z. Hassan Materials Sci. Semicond. Process. 13, 303 (2010). doi:10.1016/j.mssp.2011.02.001

    Article  Google Scholar 

  16. S.-Y. Huang, T.-C. Chang, M.-C. Chen et al., Solid State Electron. 63, 189 (2011). doi:10.1016/j.sse.2011.04.012

    Article  Google Scholar 

  17. M.-H. Wu, C.-H. Cheng, C.-S. Lai, T.-M. Pan, Sens. Actuators, B 138, 221 (2009). doi:10.1016/j.snb.2009.01.059

    Article  Google Scholar 

  18. C.R. Michel, A.H. Martínez-Preciado, R. Parra, C.M. Aldao, M.A. Ponce, Sens. Actuators, B 202, 1220 (2014). doi:10.1016/j.snb.2014.06.038

    Article  Google Scholar 

  19. [19] J.-G Kang, B.-K Min, Y. Sohn, J Mater Sci 50, 1958 (2015). doi:10.1007/s10853-014-8760-8

    Article  Google Scholar 

  20. G. Li, T. Wang, Y. Zhu et al., Appl. Surf. Sci. 257, 6568 (2011). doi:10.1016/j.apsusc.2011.02.078

    Article  Google Scholar 

  21. B. Neumann, T. Elkins, A. Gash, H. Hagelin-Weaver, M. Bäumer, Catal Lett 145, 1251 (2015). doi:10.1007/s10562-015-1522-7

    Article  Google Scholar 

  22. T.W. Elkins, B. Neumann, M. Bäumer, H.E. Hagelin-Weaver, ACS Catal. 4, 1972 (2014). doi:10.1021/cs500138j

    Article  Google Scholar 

  23. S. Liu, Y. Cai, X. Cai et al., Appl. Catal. A 453, 45 (2013). doi:10.1016/j.apcata.2012.12.004

    Article  Google Scholar 

  24. Y. Xin, Z. Wang, Y. Qi, Z. Zhang, S. Zhang, J. Alloys Compd. 507, 105 (2010). doi:10.1016/j.jallcom.2010.07.109

    Article  Google Scholar 

  25. T.-D Nguyen, D. Mrabet, T-O Do, J. Phys. Chem. C 112, 15226 (2008). doi:10.1021/jp804030m

    Article  Google Scholar 

  26. T. Yu, J. Joo, Y.I. Park, T. Hyeon, J. Am. Chem. Soc. 128, 1786 (2006). doi:10.1021/ja057264b

    Article  Google Scholar 

  27. A.B. Panda, G. Glaspell, M.S. El-Shall, The. J. Phys. Chem. C 111, 1861 (2007). doi:10.1021/jp0670283

    Article  Google Scholar 

  28. PK Panda (2013) Ceramics International 39, 4523. doi:10.1016/j.ceramint.2012.11.048

  29. H. Zhang, H. Dai, Y. Liu, J. Deng, L. Zhang, K. Ji, Mater. Chem. Phys. 129, 586 (2011). doi:10.1016/j.matchemphys.2011.04.073

    Article  Google Scholar 

  30. Z. Ji, X. Shen, M. Li, H. Zhou, G. Zhu, K. Chen, Nanotechnology 24, 115603 (2013). doi:10.1088/0957-4484/24/11/115603

    Article  Google Scholar 

  31. S Zhu, J Guo, J Dong, et al. (2013) Ultrason. Sonochem. 20, 872. doi:10.1016/j.ultsonch.2012.12.001

    Article  Google Scholar 

  32. J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010). doi:10.1002/adma.200904093

    Article  Google Scholar 

  33. P. Pankaj, Theoretical and Experimental Sonochemistry Involving Inorganic Systems. (Springer, New York, 2010)

    Google Scholar 

  34. A. Shiralizadeh Dezfuli, M.R. Ganjali, P. Norouzi, Materials science & engineering. C. Materials Boil. Appl. 42, 774 (2014). doi:10.1016/j.msec.2014.06.012

    Google Scholar 

  35. NT Thanh, N Maclean, S Mahiddine (2014) Chem. Rev. 114, 7610. doi:10.1021/cr400544s

    Article  Google Scholar 

  36. L.H. Jiang, M.G. Yao, B. Liu et al., J. Phys. Chem. C 116, 11741 (2012). doi:10.1021/jp3015113

    Article  Google Scholar 

  37. GAM Hussein, D.J. Buttrey, Jr P DeSanto, A.A. Abd-Elgaber, H. Roshdy, AYZ Myhoub, Thermochim. Acta 402, 27 (2003). doi:10.1016/S0040-6031(02)00535-X

    Article  Google Scholar 

  38. M Srivastava, AK Das, P Khanra, ME Uddin, NH Kim, JH Lee (2013) J. Materials Chem. A 1, 9792. doi:10.1039/c3ta11311f

    Article  Google Scholar 

  39. G. Wang, J.T. Bai, Y.H. Wang, Z.Y. Ren, J.B. Bai, Scripta Mater. 65, 339 (2011). doi:10.1016/j.scriptamat.2011.05.001

    Article  Google Scholar 

  40. S Bernal, FJ Botana, R García, JM Rodríguez-Izquierdo (1987) React. Solids 4, 23. doi:10.1016/0168-7336(87)80085-2

    Article  Google Scholar 

  41. H. Zhang, Q. Huang, Y. Huang et al., Electrochim. Acta 142, 125 (2014). doi:10.1016/j.electacta.2014.07.094

    Article  Google Scholar 

  42. R.S. Nicholson (1965) Anal. Chem. 37, 1351

    Article  Google Scholar 

  43. N. Siraj, G. Grampp, S. Landgraf, K. Punyain, Z. Phys. Chem. 227, 105 (2013). doi:10.1524/zpch.2012.0217

    Article  Google Scholar 

  44. B Kaur, T Pandiyan, B Satpati, R Srivastava (2013) Colloids Surf. B-Biointerfaces 111, 97. doi:10.1016/j.colsurfb.2013.05.023

    Article  Google Scholar 

  45. F. Crespi, T. Sharp, N.T. Maidment, C.A. Marsden, Brain Res 322, 135 (1984)

    Article  Google Scholar 

  46. J. Ping, J. Wu, Y. Wang, Y. Ying, Biosens. Bioelectron. 34: 70 (2012). doi:10.1016/j.bios.2012.01.016

    Article  Google Scholar 

  47. C. Punckt, M.A. Pope, I.A. Aksay, J. Phys. Chem. C 118, 22635 (2014). doi:10.1021/jp507238u

    Article  Google Scholar 

  48. C. Punckt, M.A. Pope, I.A. Aksay, J. Phys. Chem. C 117, 16076 (2013). doi:10.1021/jp405142k

    Article  Google Scholar 

  49. MC Henstridge, EJF Dickinson, RG Compton (2012) Russ. J. Electrochem. 48, 629. doi:10.1134/S1023193512060043

    Article  Google Scholar 

  50. M.K. Zachek, A. Hermans, R.M. Wightman, G.S. McCarty, (2008) J. Electroanal. Chem. (Lausanne, Switzerland) 614, 113. doi:10.1016/j.jelechem.2007.11.007

    Google Scholar 

Download references

Acknowledgements

The financial support of this work by Iran National Science Foundation (INSF) and University of Tehran is gratefully acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ganjali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1123 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezfuli, A.S., Ganjali, M.R., Jafari, H. et al. Samaria/reduced graphene oxide nanocomposites; sonochemical synthesis and electrochemical evaluation. J Mater Sci: Mater Electron 28, 6176–6185 (2017). https://doi.org/10.1007/s10854-016-6296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6296-1

Keywords

Navigation