Skip to main content
Log in

Glass structure of the CaO–B2O3–SiO2–Al2O3–ZnO glasses system with different Si content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of the present work is to investigate the effects of SiO2 content on the structure of CaO–B2O3–SiO2–Al2O3–ZnO glass using the MAS-NMR, the fourier transform infrared spectrometer and differential scanning calorimetry (DSC). The results showed that the majority of Al existed in fourfold coordination and Zn acted as glass modifier in glass structure. With the increasing of SiO2 content, the relative amount of BIII units decreased while the BIV units increased and the proportion of Si–O–Si bridge oxygen bond in [SiO4] tetrahedrons increased obviously. The DSC curves revealed that the glass transition temperature increased from 732 to 773 °C with the increasing of SiO2 content, indicating that SiO2 generating more bridge oxygen can increase the degree of polymerization of glass structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Shao, X. Wu, Y. Kong, X. Shen, S. Cui, X. Guan, C. Jiao, J. Jiao, J. Alloy Compd. 663, 360 (2016)

    Article  Google Scholar 

  2. M.Y. Hassaan, H.M. Osman, H.H. Hassan, A.S. El-Deeb, M.A. Helal, Ceram. Int. (2016). doi:10.1016/j.ceramint.2016.10.137

    Google Scholar 

  3. M. Klinger-Strobel, O. Makarewicz, M.W. Pletz, A. Stallmach, C. Lautenschlager, J. Mater. Sci. 27, 175 (2016)

    Google Scholar 

  4. M. Sitarz, J. Non-Cryst. Solids 357, 1603 (2011)

    Article  Google Scholar 

  5. M. Ma, Z. Liu, F. Zhang, F. Liu, Y. Li, R. Bordia, J. Am. Ceram. Soc. 99, 2402 (2016)

    Article  Google Scholar 

  6. Y. Lai, Y. Zeng, X. Tang, H. Zhang, J. Han, H. Su, RSC Adv. 6, 93722 (2016)

    Article  Google Scholar 

  7. S. Khan, G. Kaur, K. Singh, Ceram. Int. 43, 722 (2017)

    Article  Google Scholar 

  8. M. LaComb, D. Rice, J.F. Stebbins, J. Non-Cryst. Solids 447, 248 (2016)

    Article  Google Scholar 

  9. J.Z. Liu, X.F. Wu, N.X. Xu, Q.L. Zhang, H. Yang, J. Mater. Sci. 26, 8899 (2015)

    Google Scholar 

  10. T.R. Rao, C.V. Reddy, C.R. Krishna, U.S.U. Thampy, R.R. Raju, P.S. Rao, R.V.S.S.N. Ravikumar, J. Non-Cryst. Solids 357, 3373 (2011)

    Article  Google Scholar 

  11. R. Stefan, E. Culea, P. Pascuta, J. Non-Cryst. Solids 358, 839 (2012)

    Article  Google Scholar 

  12. S. Cetinkaya Colak, I. Akyuz, F. Atay, J. Non-Cryst. Solids 432, 406 (2016)

    Article  Google Scholar 

  13. J.S. Park, Y. Kim, H. Shin, J.H. Moon, W. Lim, J. Am. Ceram. Soc. 91, 3630 (2008)

    Article  Google Scholar 

  14. K. Herzog, J. Peters, B. Thomas, C. Jäger, Ber. Bunsenges. Phys. Chem 100, 1655 (1996)

    Article  Google Scholar 

  15. A. Gaddam, H.R. Fernandes, J.M.F. Ferreira, RSC Adv. 5, 41066 (2015)

    Article  Google Scholar 

  16. B.G. Parkinson, D. Holland, M.E. Smith, A.P. Howes, C.R. Scales, J. Phys. 19, 415114 (2007)

    Google Scholar 

  17. S.H. Risbud, R.J. Kirkpatrick, A.P. Taglialavore, B. Montez, J. Am. Ceram. Soc. 70, C-10(1987)

  18. S. Sen, Z. Xu, J. Stebbins, J. Non-Cryst. Solids 226, 29 (1998)

    Article  Google Scholar 

  19. A. Saini, A. Khanna, V.K. Michaelis, S. Kroeker, F. González, D. Hernández, J. Non-Cryst. Solids 355, 2323 (2009)

    Article  Google Scholar 

  20. K. Singh, I. Bala, V. Kumar, Ceram. Int. 35, 3401(2009)

    Article  Google Scholar 

  21. A. Aronne, S. Esposito, P. Pernice, Phys. Chem. Glasses 40, 63 (1999)

    Google Scholar 

  22. X. Zhu, C. Mai, M. Li, J. Non-Cryst. Solids 388, 55 (2014)

    Article  Google Scholar 

  23. M. Nakamura, Y. Mochizuki, K. Usami, Y. Itoh, T. Nozaki, Solid State Commun. 50, 1079 (1984)

    Article  Google Scholar 

  24. N. Santha, T. Nideep, S. Rejisha, J. Mater. Sci. 23, 1435 (2012)

    Google Scholar 

  25. G.J. Mohini, N. Krishnamacharyulu, G. Sahaya Baskaran, P.V. Rao, N. Veeraiah, Appl. Surf. Sci 287, 46 (2013)

    Article  Google Scholar 

  26. H. Shao, H.Q. Zhou, X.D. Shen, Adv. Mater. Res. 189, 4466 (2011)

    Article  Google Scholar 

  27. J.H. Jean, C.R. Chang, C.D. Lei, J. Am. Ceram. Soc. 87, 1244 (2004)

    Article  Google Scholar 

  28. C.R. Chang, J.H. Jean, J. Am. Ceram. Soc. 82, 1725 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Center for Magnetic Resonance in Wuhan acquiring the MAS-NMR measurement. This work was supported by the fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (Nos. SKL-SPM-201535, 201548), The 551 project of Kunming, the Basic Applied Research Foundation of Yunnan Province, China (Grant Nos. 2016FD125, 2016FB083) and Science &Technology Program of Yunnan Province (No. 2014DC019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao Han or Yiming Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Lai, Y., Xiang, Y. et al. Glass structure of the CaO–B2O3–SiO2–Al2O3–ZnO glasses system with different Si content. J Mater Sci: Mater Electron 28, 6131–6137 (2017). https://doi.org/10.1007/s10854-016-6291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6291-6

Keywords

Navigation