Advertisement

New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue

  • Roya Mohammadzadeh KakhkiEmail author
  • Reza Tayebee
  • Fatemeh Ahsani
Article

Abstract

Due to excellent properties, recently ZnO nanomaterials are used as very efficient photocatalysts for the photocatalytic degradation of toxic organic dyes and chemicals under various light radiations. In this article we used a new and simple method for synthesis of high efficient AgxZn1−xO (x = 0, 0.3, 0.5, 1, 2, 4, 6) nano photocatalyst in visible region. The process is simple, cost-effective and can be easily scaled-up. It was shown that the catalytic behavior of ZnO that is synthesized with this method has good efficiency about 63% for degradation of methylene blue in visible-light illumination.With doping of a little (0.5%) Ag the photocatalytic activity in the visible-light range is notably improved with a maximum effeciency of 98% degradation of methylene blue. In this work Ag doped and oxygen vacancy defects on the surface of ZnO nanoparticles benefit the separation of photogenerated electron–hole pairs, thus lead to enhancing the photocatalytic activity. The properties of the nanoparticles were characterized by the employments of UV–Vis spectroscopy (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy(FT-IR),photoluminescence (PL), field emission scanning electron microscopy (FESEM) and scanning energy dispersive X-ray spectroscopy (EDS).

Keywords

Methylene Blue Photocatalytic Activity Methylene Blue Localize Surface Plasmon Resonance Degradation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Mohammadzadeh Kakhki, F. Ahsani, N. Mir, J. Mater. Sci. (2016). doi: 10.1007/s10854-016-5279-6 Google Scholar
  2. 2.
    R. Mohammadzadeh Kakhki, Arab. J. Chem. (2014). doi: 10.1016/j.arabjc.2014.11.058 Google Scholar
  3. 3.
    R. Mohammadzadeh Kakhki, J. Incl. Phenom. Macrocycl. Chem. 82, 301–310 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Mohammadzadeh Kakhki, M. Rakhshanipour, Arab. J. Chem. (2015). doi: 10.1016/j.arabjc.2015.07.012 Google Scholar
  5. 5.
    G. Rounaghi, R. Mohammadzadeh Kakhki, H. Azizi-toupkanloo, Mater. Sci. Eng. C, 32, 172 (2012)CrossRefGoogle Scholar
  6. 6.
    R. Mohammadzadeh Kakhki, Russ. J. Electrochem. 49(5), 458–465 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Mohammadzadeh Kakhki, Russ. J. Appl. Chem. 89(3), 480–488 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Tayebee, K. Savoji, M K. Razi, B. Malek, RSC Adv. 6, 55319–55326 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Javadi, R. Tayebee, Microporous Mesoporous Mater. 231, 100–109 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Tayebee, M.M. Amini, N. Abdollahi, A. Aliakbari, S. Rabiei, H. Ramshini, Appl. Catal. A 468, 75–87 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Tayebee, M.M Amini, H. Rostamian, A. Aliakbari. Dalton Trans. 43, 1550–1563 (2014)CrossRefGoogle Scholar
  12. 12.
    J.J. Shiang, A.V. Kadavanich, R.K. Grubbs, A.P. Alivisatos, J. Phys. Chem. 99, 17417 (1995)CrossRefGoogle Scholar
  13. 13.
    S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. Elsayed, Science 272, 1924 (1996)CrossRefGoogle Scholar
  14. 14.
    R.M. Kakhki, M. Nejati-Yazdinejad, F. Kakeh, Arab. J. Chem. (2013). doi: 10.1016/j.arabjc.2013.09.020 Google Scholar
  15. 15.
    K. Rastogi, J.N. Sahu, B.C. Meikap, M.N. Biswas, J. Hazard. Mater. 158, 531–540 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Nishio, M. Tokumura, H.T. Znad, Y. Kawase, J. Hazard. Mater. 138, 106–115 (2006)CrossRefGoogle Scholar
  17. 17.
    R. van Grieken, Ind. Eng. Chem. Res. 46, 7605–7610 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Farbod, M. Khademalrasool, Powder Technol. 214, 344 (2011)CrossRefGoogle Scholar
  19. 19.
    I. El Saliby, Y. Okour, H.K. Shon, J. Kandasamy, W.E. Lee, J.-H. Kim, J. Ind. Eng. Chem. 18, 1033 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Shafaei, M. M. Nikazar, M. Arami Desalination 252, 8–16 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Xie, Y. Li, W. Zhao, L. Bian, Y. Wei, Powder Technol. 207, 140–144 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Bak, J. Nowotny, M. Rekas, C. Sorrell, Int. J. Hydr. Energy 27, 991–1022 (2002)CrossRefGoogle Scholar
  23. 23.
    M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812–2816 (2002)CrossRefGoogle Scholar
  24. 24.
    J. Rashid, M.A. Barakat, N. Salah, S.S. Habib, RSC Adv. (2014). doi: 10.1039/C4RA12990C Google Scholar
  25. 25.
    E. Grabowska, J.W. Sobczak, M. Gazda, A. Zaleska, Appl. Catal. B 117, 351–359 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331, 746–750 (2011)CrossRefGoogle Scholar
  27. 27.
    X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Langmuir 29, 3097–3105 (2013)CrossRefGoogle Scholar
  28. 28.
    M.E. Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279–2283 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, Q. Zhang, D. Qin, Y.N. Xia, Controlling the synthesis and assembly of silver nanostructures forplasmonic applications. Chem. Rev. 111, 3669–3712 (2011)CrossRefGoogle Scholar
  30. 30.
    P. Christopher, H. Xin, S. Linic. Nat. Chem 3, 1–6 (2011)CrossRefGoogle Scholar
  31. 31.
    W. Hou, Z. Liu, P. Pavaskar, W.H. Hung, S.B. Cronin, J. Catal. 277, 149–153 (2011)CrossRefGoogle Scholar
  32. 32.
    H.E. Chao, Y.U. Yun, H.U. Xiangfang, A. Larbot J. Eur. Ceram. Soc. 23, 1457 (2003)CrossRefGoogle Scholar
  33. 33.
    H.S. Kang, B.D. Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W. Chang, Lee, S. Y. Appl. Phys. Lett. 88, 202108 (2006)CrossRefGoogle Scholar
  34. 34.
    P. Pathak, M.J. Meziani, L. Castillo, Y.P. Sun, Green Chem. 7, 667 (2005)CrossRefGoogle Scholar
  35. 35.
    E. Stathatos, T. Petrova, P. Lianos, Langmuir 17, 5025 (2001)CrossRefGoogle Scholar
  36. 36.
    A. Pal, S. Shah, S. Devi, Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater. Chem. Phys. 114, 530–532 (2009)CrossRefGoogle Scholar
  37. 37.
    J. Fan, R. Freer, J. Appl. Phys. 77, 9 (1995)CrossRefGoogle Scholar
  38. 38.
    D.J. Blinks, R.W. Grimes, J. Am. Ceram. Soc. 76, 2370 (1993)CrossRefGoogle Scholar
  39. 39.
    L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, Spectral and nonlinear optical characteristics of nanocomposites of ZnO–Ag. Chem. Phys. Lett. 455, 265–269 (2008)CrossRefGoogle Scholar
  40. 40.
    J.D. Ye, S.L. Gu, F. Qin, S.M. Zhu, S.M. Liu, X. Zhou, W. Liu, L.Q. Hu, R. Zhang, Y. Shi, Y.D. Zheng, Correlation between green luminescence and morphology evolution of ZnO films, Appl. Phys. A 81, 759–762 (2005)CrossRefGoogle Scholar
  41. 41.
    S.T. Kuo, W.H. Tuan, J. Shieh, S.F. Wang, J. Eur. Ceram. Soc. 27, 4521 (2007)CrossRefGoogle Scholar
  42. 42.
    Z. Fu, B. Lin, G. Liao, Z. Wu, J. Cryst. Growth 93, 316 (2008)Google Scholar
  43. 43.
    L. Dai, X.L. Chen, W.J. Wang, T. Zhou, B.Q. Hu, J. Phys.: Condens. Matter 15, 2221 _2003_Google Scholar
  44. 44.
    M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, J. Alloys Compd. 494, 275–284 (2010)CrossRefGoogle Scholar
  45. 45.
    R. Saleh, L. Munisa, W. Beyer, Infrared absorption in a-SiC:H alloy prepared by d.c. sputtering. Thin Solid Films 426, 117–123 (2003)CrossRefGoogle Scholar
  46. 46.
    C. K. Ghosh, S. R. Popuri, T. U. Mahesh, K. K. Chattopadhyay, Preparation of nanocrystalline CuAlO2 through sol–gel route. J. Sol–Gel Sci. Technol. 52, 75–81 (2009)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Effect of aspect ratio and surface defects on the photocatalytic activity of ZnOnanorods. Sci. Rep. 4, 4596 (2014)Google Scholar
  48. 48.
    T.L Thompson, J.T. Yates Jr TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top. Catal. 35, 197–210 (2005)CrossRefGoogle Scholar
  49. 49.
    Liu, S.; Li, C.; Yu, J.; Xiang, Q. Improved visible-light photocatalytic activity of porous carbon self-doped ZnOnanosheet-assembled flowers. Cryst. Eng. Comm. 13, 2533–2541 (2011)CrossRefGoogle Scholar
  50. 50.
    D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 118, 15300–15307 (2014)CrossRefGoogle Scholar
  51. 51.
    J. Fang, H. Fan, Y. Ma, Z. Wang, Q. Chang, Surface defects control for ZnOnanorods synthesized by quenching and their anti-recombination in photocatalysis. Appl. Surf. Sci. 332, 47–54 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang, 670 Relationship between oxygen defects and the photocatalytic property 671 of ZnO nanocrystals in nafion membranes. Langmuir, 25, 1218–1223 (2009)CrossRefGoogle Scholar
  53. 53.
    Q. Deng, X. Duan, D.H.L. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang ACS Appl. Mater. Interfaces 4, 6030–6037 (2012). doi: 10.1021/am301682g CrossRefGoogle Scholar
  54. 54.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003). doi: 10.1021/jp026731y CrossRefGoogle Scholar
  55. 55.
    Y.K. Mishra, V.S.K. Chakravadhanula,, V. Hrkac, S. Jebril, D.C. Agarwal, S. Mohapatra, D.K. Avasthi, L. Kienle, R. Adelung, J. Appl. Phys. 112, 064308 (2012). doi: 10.1063/1.4752469 CrossRefGoogle Scholar
  56. 56.
    I. Thomann, B.A. Pinaud, Z. Chen, B.M. Clemens, T.F. Jaramillo, M.L. Brongersma, Nano Lett. 11, 3440–3446 (2011). doi: 10.1021/nl201908s CrossRefGoogle Scholar
  57. 57.
    B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29, 939 (2013)CrossRefGoogle Scholar
  58. 58.
    D. Y. Fang, C. L. Li, N. Wang, P. Li, P. Yao, Crys. Res. Technol. 48, 265 (2013)CrossRefGoogle Scholar
  59. 59.
    L. C. Zhang, Y. F. Ruan, Y. L. Liu, Y. Zhai, Crys. Res. Technol. 48, 996 (2013)CrossRefGoogle Scholar
  60. 60.
    B. Krishnakumar, B. Subash, M. Swaminathan, Sep. Purif. Technol. 85, 35 (2012)CrossRefGoogle Scholar
  61. 61.
    R. Velmurugan, K. Selvam, B. Krishnakumar, M. Swaminathan, Sep. Purif. Technol. 80, 119 (2011)CrossRefGoogle Scholar
  62. 62.
    Y.F. Tu, Q.M. Fu, X.J. Niu, J.P. Sang, Z.J. Tan, G. Zheng, X.W. Zou, Crys. Res. Technol. 48, 138 (2013).CrossRefGoogle Scholar
  63. 63.
    Y. Peng, S. Qin, W.S. Wangb, A.W. Xu, Fabrication of porous Cd-doped ZnOnanorods with enhanced photocatalytic activity and stability. Cryst. Eng. Comm. 15, 6518–6525 (2013)CrossRefGoogle Scholar
  64. 64.
    M. Ahmada, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Preparation of highly efficient Al-doped ZnOphotocatalyst by combustion synthesis, Current. Appl. Phys. 13, 697–704 (2013)Google Scholar
  65. 65.
    T.J. Whang, M.T. Hsieh, H.H Chen, Appl. Surf. Sci. 258, 2796–2801 (2012)CrossRefGoogle Scholar
  66. 66.
    R. Saravanana, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci. 452, 126–133 (2015)CrossRefGoogle Scholar
  67. 67.
    S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.08.006
  68. 68.
    B.M. Rajbongshi, A. Ramchiary, B.M. Jha, S. K. Samdarshi, J. Mater. Sci. 25, 2969–2973 (2014). doi: 10.1007/s10854-014-1968-1 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Roya Mohammadzadeh Kakhki
    • 1
    Email author
  • Reza Tayebee
    • 2
    • 3
    • 4
  • Fatemeh Ahsani
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GonabadGonabadIran
  2. 2.Department of Chemistry, Faculty of SciencesHakim Sabzevari UniversitySabzevarIran
  3. 3.Department of Chemistry, Faculty of SciencesPayam Noor UniversityTehranIran
  4. 4.Department of Chemistry, Faculty of SciencesPayam Noor UniversityGonabadIran

Personalised recommendations