Skip to main content
Log in

Remarkable change of structural, optical, photoluminescence and electrical properties of chemically prepared nanocrystalline films of PbS with concentration of triethanolamine (TEA)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although triethanolamine (TEA) is widely used as complexing agent in the preparation of nanocrystalline PbS thin film by chemical bath deposition method, not enough studies have been reported on how its concentration affects various properties of the films. In the present work, we studied the effect of concentration of TEA on structural, morphological, optical, photoluminescence and electrical conduction properties of the films. We observed that with the increase of molar concentration of TEA—the crystallinity deteriorates with reduced crystallite size and increased strain and dislocation density; the densities of the films have been reduced; the films become non stoichiometric; optically these become more transparent but less reflecting showing prominent blue shift in the optical band gap which increased with the concentration of TEA; the width of the localized states in the band gap has been increased. The refractive index and extinction coefficient of the films are observed to be wavelength dispersive. The refractive index decreases with the increase of TEA complexation. In the NIR region, the extinction coefficient also decreases as concentration of TEA increases. The real and imaginary parts of dielectric constant replicates the refractive index and extinction coefficient curves respectively against wavelength. The PL spectra reveal conduction band to valence band transition with reduced intensity at higher molarity of TEA. The current–voltage measurement shows that the conductivity decreases considerably with the increase of TEA concentration. Our measurement estimated the crystallite size in the range of 29–37.49 nm, strain ~10−3, dislocation density ~1011 cm−2, band gap 0.8–1.55 eV, bandtail width 0.27–0.57 eV, the refractive index 2.3–5.8 and conductivity 0.0011–0.20 (Ωcm)−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E. Güneri, F. Göde, S. Çevik, Thin Solid Films 589, 578 (2015)

    Article  Google Scholar 

  2. Baligh Touati, Abdelaziz Gassoumi, Salem Alfaify, Kamoun-Turki Najoua, Mater. Sci. Semicond. Process. 34, 82 (2015)

    Article  Google Scholar 

  3. N. Choudhury, B.K. Sarma, Thin Solid Films 519, 2132 (2011)

    Article  Google Scholar 

  4. P. Yang, C.F. Song, M.K. Lu, X. Yin, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 345, 429 (2001)

    Article  Google Scholar 

  5. H. Hirata, K. Higoshiyama, Bull. Chem. Soc. Jpn 44, 2420 (1971)

    Article  Google Scholar 

  6. P.K. Nair, M.T.S. Nair, J. Phys. D 23, 150 (1990)

    Article  Google Scholar 

  7. A. Martucci, J. Fick, J. Schell, G. Battaglin, M. Guglielmi, J. Appl. Phys. 86, 79 (1999)

    Article  Google Scholar 

  8. A. Hussain, A. Begum, A. Rahman, Indian J. Phys. 86, 697 (2012)

    Article  Google Scholar 

  9. B. Barman, K.C. Sarma, Indian J. Phys. 86, 703 (2012)

    Article  Google Scholar 

  10. R.R. Pawar, R.A. Bhavsar, S.G. Sonawane, Indian J. Phys. 86, 871 (2012)

    Article  Google Scholar 

  11. R. Shrivastava, S.C. Shrivastava, R.S. Singh, A.K. Singh, Indian J. Phys. (2015). doi:10.1007/s12648-015-0694-8

    Google Scholar 

  12. P.K. Mochahari, K.C. Sarma, Indian J. Phys. 88, 1265 (2014)

    Article  Google Scholar 

  13. Y.J. Yang, S. Hu, Thin Solid Films 516, 6048 (2008)

    Article  Google Scholar 

  14. S. Kaci, A. Keffous, M. Trari, O. Fellahi, H. Menari, A. Manseri, L. Guerbous, J. Lumin. 130, 1849 (2010)

    Article  Google Scholar 

  15. N.B. Kotadiya, A.J. Kothari, D. Tiwari, T.K. Chaudhuri, Appl. Phys. A 108, 819 (2012)

    Article  Google Scholar 

  16. M.S. Ghamsari, M.K. Araghi, S.J. Farahani, Mater. Sci. Eng. B 133, 113 (2006)

    Article  Google Scholar 

  17. R. Devi, P. Purkayastha, P.K. Kalita, B.K. Sarma, Bull. Mater. Sci. 30, 123 (2007)

    Article  Google Scholar 

  18. H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Thin Solid Films 516, 7306 (2008)

    Article  Google Scholar 

  19. R. Mendoza-Pe ́rez, G. Santana-Rodrı ́guez, J. Sastre-Herna ́ndez, A. Morales-Acevedo, A. Arias-Carbajal, O. Vigil-Galan, J.C. Alonso, G. Contreras-Puente, Thin Solid Films 480–481, 173 (2005)

    Article  Google Scholar 

  20. T.L. Remadevi, K.C. Preetha, J. Mater. Sci. 23, 2017 (2012)

    Google Scholar 

  21. B.J. Baruah, M.N. Bora, L. Saikia, D. Saikia, P. Phukan, K.C. Sarma, J. Mater. Sci. 27, 3911 (2016)

    Google Scholar 

  22. J. Lee, Thin Solid Films 515, 6089 (2007)

    Article  Google Scholar 

  23. A.U. Ubale, Y.S. Sakhare, S.G. Ibrahim, M.R. Belkhedkar, Solid State Sci. 23, 96 (2013)

    Article  Google Scholar 

  24. K. Manikandan, C. Surendra Dilip, P. Mani, J. Joseph Prince, Am. J. Eng. Appl. Sci. 8, 318 (2015)

    Article  Google Scholar 

  25. A. Mondal, T.K. Choudhury, P. Pramanik, Solar Energy Mater. 7, 431 (1983)

    Article  Google Scholar 

  26. S.B. Patil, A.K. Singh, Appl. Surf. Sci. 256, 2884 (2010)

    Article  Google Scholar 

  27. H. Khallaf, G. Chai, O. Lupan, H. Heinrich, S. Park, A. Schulte, L. Chow, J. Phys. D 42, 135304 (2009)

    Article  Google Scholar 

  28. K.C. Preetha, T.L. Remadevi, Mater. Sci. Semicond. Process. 16, 605 (2013)

    Article  Google Scholar 

  29. K.C. Preetha, K. Deepa, A.C. Dhanya, T.L. Remadevi, IOP Conf. Ser. (2015). doi:10.1088/1757-899X/73/1/012086

    Google Scholar 

  30. R. Guo, Y. Liang, X. Gao, H. Zhu, S. Zhang, H. Liu, Braz. J. Phys. 44, 697 (2014)

    Article  Google Scholar 

  31. A. N. Fouda, M. Marzook, H. M. Abd El-Khalek, S. Ahmed, E. A. Eid, A. B. El Basaty, Silicon (2016). doi:10.1007/s12633-015-9399-z

    Google Scholar 

  32. J. Hern ́ndez-Borja, Y.V. Vorobiev, R. Ramı ́rez-Bon, Solar Energy Mater. Solar Cells 95, 1882 (2011)

    Article  Google Scholar 

  33. T. Tohidi, K. Jamshidi-Ghaleh, A. Namdar, R. Abdi-Ghaleh, Mater. Sci. Semicond. Process. 25, 197 (2014)

    Article  Google Scholar 

  34. T. Tohidi, K. Jamshidi-Ghaleh, Appl. Phys. A 118, 1247 (2015)

    Article  Google Scholar 

  35. K.C. Preetha, T.L. Remadevi, J. Mater. Sci. 24, 489 (2013)

    Google Scholar 

  36. E. Pentia, L. Pintilie, T. Botila, I. Pintilie, A. Chaparro, C. Maffiotte, Thin Solid Films 434, 162 (2003)

    Article  Google Scholar 

  37. A.N. Chattarki, S.S. Kamble, L.P. Deshmukh, Mater. Lett. 67, 39 (2012)

    Article  Google Scholar 

  38. A.P. Gaiduk, P.I. Gaiduk, A.N. Larsen, Thin Solid Films 516, 3791 (2008)

    Article  Google Scholar 

  39. G. Hodes, Chemical Solution Deposition of Semiconductor Films (Marcel Dekker Inc, New York, 2003) pp. 89–90

    Google Scholar 

  40. R. Guinebretiere, X-ray Diffraction by Polycrystalline Materials (ISTE Ltd., London, 2007) p. 21

    Book  Google Scholar 

  41. S. Seghaier, N. Kamoun, R. Brini, A.B. Amara, Mater. Chem. Phys. 97, 71 (2006)

    Article  Google Scholar 

  42. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction 2nd Impression (Pearson, 2015) p. 379

    Google Scholar 

  43. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6:6 (2012)

    Article  Google Scholar 

  44. B. Barman, K.C. Sarma, Indian J. Phys. 86, 703 (2012)

    Article  Google Scholar 

  45. K.K. Nanda, S.N. Sahu, R.K. Soni, S. Tripathy, Phys. Rev. B 58, 15405 (1998)

    Article  Google Scholar 

  46. F. Gode, O. Baglayan, E. Guneri, Chalcogenide Lett. 12, 519 (2015)

    Google Scholar 

  47. A.V. Baranov, K.V. Bogdanov, E.V. Ushakova, S.A. Cherevkov, A.V. Fedorov, S. Tscharntke, Condens. Matter Spectrosc. 109, 301 (2010)

    Google Scholar 

  48. S. Xiong, B. Xi, D. Xu, C. Wang, X. Feng, H. Zhou, Y. Qian, J. Phys. Chem. C 111, 16761 (2007)

    Article  Google Scholar 

  49. R. Palomino-Merino, Portillo-Moreno, L.A. Chaltel-Lima, R. Gutiérrez Pérez, M. de Icaza-Herrera, V.M. Castaño, J. Nanomater. (2013). doi:10.1155/2013/507647

    Google Scholar 

  50. M.M. Abbas, A.A.-M. Shehab, N.-A. Hassan, A.-K. Al-Samuraee, Energy Procedia 6, 241 (2011)

    Article  Google Scholar 

  51. M.M. Abbas, A.A.-M. Shehab, N.-A. Hassan, A.-K. Al-Samuraee, Thin Solid Films 519, 4917 (2011)

    Article  Google Scholar 

  52. N. Ghobadi, Int. Nano Lett. 3, 2 (2013)

    Article  Google Scholar 

  53. D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, J. Alloys Compd. 484, 463 (2009)

    Article  Google Scholar 

  54. H. Mahfoz Kotb, M.A. Dabban, A.Y. Abdel-latif, M.M. Hafiz, J. Alloys Compd. 512, 115 (2012)

    Article  Google Scholar 

  55. S. Benramache, O. Belahssen, A. Guettaf, A. Arif, J. Semicond. 34, 113001–113001 (2013)

    Article  Google Scholar 

  56. J. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1975) p. 52

    Google Scholar 

  57. F. Göde, E. Güneri, F.M. Emen, V. Emir Kafadar, S. Ünlü, J. Lumin. 147, 41 (2014)

    Article  Google Scholar 

  58. J. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1975) p. 413

    Google Scholar 

  59. Z. Fang, X. Lin, Y. Fan, Y. Liu, Y. Ni, X. Wei, J. Alloys Compd. 493, L25 (2010)

    Article  Google Scholar 

  60. A. Goswami, Thin Film Fundamentals (New Age International (P) Ltd., New Delhi, 2008), p. 265

    Google Scholar 

Download references

Acknowledgements

The authors express gratefulness to SAIF-STIC, Cochin University of Science & Technology for providing XRD and UV–Vis-NIR characterization facility, the Material Science Laboratory under the department of Physics of Sibsagar College, Sivasagar for providing PL and electrical characterization facility, the Department of Physics, Manipur University for providing SEM and EDAX facility and CIF, IIT Guwahati for Laser Micro Raman System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Baruah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, B.J., Sarma, K.C. Remarkable change of structural, optical, photoluminescence and electrical properties of chemically prepared nanocrystalline films of PbS with concentration of triethanolamine (TEA). J Mater Sci: Mater Electron 28, 5913–5924 (2017). https://doi.org/10.1007/s10854-016-6265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6265-8

Keywords

Navigation