Skip to main content
Log in

Optimizing the physical properties of calcium nanoferrites to be suitable in many applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Calcium nano ferrite with composition CaGdxEryFe2−x−yO4 (x = y = 0.0, x = 0.025, y = 0.05) was prepared by citrate gel auto combustion method. The prepared samples showed orthorhombic phase structure and the crystallite sizes were found in the range of 32.1–35.3 nm. Detailed observation via the Field Emission Scanning Electron Microscopy (FESEM) showed that the calcium ferrite nano-particles were spherical and capsule like formation shape. The hysteresis loop confirms the magnetic behavior of the investigated samples, which is then discussed on the basis of super exchange interactions. Magnetic parameters such as saturation magnetization, coercivity, and retentivity were obtained. Greater than six-fold increase in coercivity (≈2085 Oe) was observed in calcium nanoferrites compared to the doped samples (≈360 Oe). The CaFe2O4-type structure includes edge- and corner sharing BO6 octahedral, constituting a very unique network similar to perovskite-related nanoparticles. This structural network leads to an improvement in the physical properties of the investigated samples. Great efforts have been made to synthesize pure nanoferrite samples without any secondary phases even after the substitution of low soluble rare earth ions. Special attention should be given to calcium ferrite nanoparticles which are suitable candidates to be used in the manufacturing of bone-like scaffolds, hyperthermia treatment of cancer and biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.H. Sulaiman, M.J. Ghazali, B.Y. Majlis, J. Yunas, M. Razali, Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol–gel method for targeted drug delivery. Bio-Med. Mater. Eng. 2, S103–S110 (2015)

    Article  Google Scholar 

  2. Manuel Bañobre-López, Antonio Teijeiro, Jose Rivas, Magnetic nanoparticle–based hyperthermia for cancer treatment, Rep. Pract. Oncol. Radiother. 18, 397–400 (2013)

    Article  Google Scholar 

  3. C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A.S. Lübbe, Locoregional cancer treatment with magnetic drug targeting, Cancer Res. 60, 6641–6648 (2000)

    Google Scholar 

  4. K.K. Bamzai, Gurbinder Kour, Balwinder Kaur, S.D. Kulkarni, Preparation, and Structural and Magnetic Properties of Ca Substituted Ferrite with Composition MgCaxFe2–xO4 (x = 0. 00, 0. 01, 0. 03, 0. 05, 0.07). J. Mater. (2014) doi: 10.1155/2014/184340

    Google Scholar 

  5. S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). J. Phys. Chem. C 120, 5682–5693 (2016)

    Article  Google Scholar 

  6. V. Jagadeesha Angadi, et al. Effect of Sm3+-Gd3+ on structural, electrical and magnetic properties of Mn-Zn ferrites synthesized via combustion route, J. Alloys Comp. (2015), doi: 10.1016/j.jallcom.2015.09.222

    Google Scholar 

  7. Adel Maher Wahba, Mohamed Bakr Mohamed, Structural and magnetic characterization and cation distribution of nanocrystalline CoxFe3–xO4 ferrites, J. Magn. Magn. Mater. 378, 246–252 (2015)

    Article  Google Scholar 

  8. S. Manouchehrei, S.T.M. Benehi, M.H. Yousefi, Effect of aluminum doping on the structural and magnetic properties of Mg–Mn ferrite nanoparticles prepared by coprecipitation method, J. Supercond. Magn. 29, 2179–2188 (2016)

    Article  Google Scholar 

  9. L. Khanna, N.K. Verma, Size-dependent magnetic properties of calcium ferrite nanoparticles, J. Magn. Magn. Mater. 336, 1–7 (2013)

    Article  Google Scholar 

  10. A.M. Arevalo-Lopez, A.J. Dos Santos-Garcia, E. Castillo-Martinez, A. Duran, M.A. Alario Franco, Spinel to CaFe2O4 transformation: mechanism and properties of beta-CdCr2O4. Inorg. Chem. 49, 2827–2833 (2010)

    Article  Google Scholar 

  11. E.E. Ateia, A.T. Mohamed, Improvement of the magnetic properties of magnesium nano ferrites via Co2+/Ca2+ Doping, J. Supercond. Nov. Magn. doi: 10.1007/s10948-016-3839-x

  12. R. Ubic, G. Subodh, The prediction of lattice constants in orthorhombic perovskites. J. Alloys Comp. 488, 374–379 (2009)

    Article  Google Scholar 

  13. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites, J. Mater. Sci. doi: 10.1007/s10854-016-5517-y

  14. S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J. Mol. Struct. 1038, 45–51 (2013)

    Article  Google Scholar 

  15. S.E. Shirsath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, A. Morisako, Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4, J. Magn. Magn. Mater. 323, 3104–3108 (2011).

    Article  Google Scholar 

  16. S.T. Assar, H.F. Abosheiasha, S.A. Saafan, M.K. EL Nimr, Preparation, characterization and magnetization of nano and bulk Ni0.5Co0.5–2xFe2+xO4 samples, J. Mol. Strut. 1084, 128–134 (2015)

    Article  Google Scholar 

  17. S. Ammar, A. Helfen, N. Jouini, F. Fievet, I. Rosenman, F. Villain, M. P. Molinie, Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J. Mater. Chem. 11, 186–192 (2001)

    Article  Google Scholar 

  18. M.B. Mohamed, M. Yehia, Cation distribution and magnetic properties of nanocrystalline Gallium substituted cobalt ferrite. J. Alloys Comp 615, 181–187 (2014)

    Article  Google Scholar 

  19. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, Wiley, Hoboken (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma S. Soliman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Abdelatif, G. & Soliman, F.S. Optimizing the physical properties of calcium nanoferrites to be suitable in many applications. J Mater Sci: Mater Electron 28, 5846–5851 (2017). https://doi.org/10.1007/s10854-016-6256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6256-9

Keywords

Navigation