Skip to main content
Log in

Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics for LTCC application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Li3Mg2NbO6 ceramics doped with ZnO-B2O3-SiO2 (ZBS) additives were synthesized via the conventional solid-state reaction process. The influence of ZBS additives on phase composition, sintering behavior, microstructure and microwave dielectric properties of Li3Mg2NbO6 ceramics were investigated in detail. The XRD patterns showed that the sintered specimen presented a single phase and no secondary phase appeared. We found that proper amount of ZBS additives could significantly reduce the sintering temperature from 1250 to 925 °C and promote the densification of Li3Mg2NbO6 ceramics. The εr and Q × f value were strongly affected by bulk density and grain size, respectively. As ZBS content increased, the τf value shifted toward negative direction. In summary, excellent microwave dielectric properties of εr ~ 14.84, Q × f ~ 73,987 GHz, τf ~ −16.05 ppm/°C could be obtained in 0.5 wt.% ZBS modified sample when sintered at 925 °C for 4 h. Furthermore, the material was compatible with Ag electrode, demonstrating that it would be a promising candidate material for LTCC application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Zhang, Y. Wang, J. Liu, Z.K. Song, Y.M. Han, L.X. Li, Mater. Lett. 123, 195–197 (2014)

    Article  Google Scholar 

  2. H.D. Xie, C. Chen, R. Tian, H.H. Xi, Mater. Lett. 162, 91–93 (2016)

    Article  Google Scholar 

  3. S.P. Wu, D.F. Chen, C. Jiang, Y.X. Mei, Q. Ma, Mater. Lett. 91, 239–241 (2013)

    Article  Google Scholar 

  4. J.J. Bian, D.W. Kim, K.S. Hong, Mater. Lett. 59, 257–260 (2005)

    Article  Google Scholar 

  5. L.L. Yuan, J.J. Bian, Ferroelectrics 387, 123–129 (2009)

    Article  Google Scholar 

  6. H.T. Wu, E.S. Kim, J. Alloy. Compd. 669, 134–140 (2016)

    Article  Google Scholar 

  7. Y.G. Zhao, P. Zhang, J. Alloy. Compd. 658, 744–748 (2016)

    Article  Google Scholar 

  8. T.W. Zhang, R.Z. Zuo, Ceram. Int. 40, 15677–15684 (2014)

    Article  Google Scholar 

  9. T.W. Zhang, R.Z. Zuo, C. Zhang, Mater. Rev. 68, 109–114 (2015)

    Google Scholar 

  10. P. Zhang, J.W. Liao, Y.G. Zhao et al., J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5575-1

    Google Scholar 

  11. J.X. Tong, B. Zhang, W. Huang, H. Yang, Mater. Lett. 95, 168–171 (2013)

    Article  Google Scholar 

  12. X.P. Lu, Y. Zheng, Z.W. Dong, Q. Huang, Mater. Lett. 131, 1–4 (2014)

    Article  Google Scholar 

  13. X.P. Lv, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Mater. Lett. 91, 217–219 (2013)

    Article  Google Scholar 

  14. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  15. W.S. Kim, T.H. Kim, E.S. Kim et al. Jpn. J. Appl. Phys. 37, 5367–5371 (1998)

    Article  Google Scholar 

  16. R.D. Shannon, G.R. Rossman, Am. Mineral 77, 94–100 (1992)

    Google Scholar 

  17. E.S. Kim, S.H. Kim, K.H. Yoon, J. Ceram. Soc. Jpn. 112, S1645–S1649 (2004)

    Google Scholar 

  18. C.L. Huang, S.H. Liu, J. Am. Ceram. Soc. 91, 3428–3430 (2008)

    Article  Google Scholar 

  19. Q.W. Liao, L.X. Li, X. Ding, X. Ren, J. Am. Ceram. Soc. 95, 1501–1503 (2012)

    Article  Google Scholar 

  20. C.L. Huang, J.Y. Chen, J. Am. Ceram. Soc. 92, 675–678 (2009)

    Article  Google Scholar 

  21. S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  Google Scholar 

  22. C.L. Huang, C.H. Su, C.M. Chang, J. Am. Ceram. Soc. 94, 4146–4149 (2011)

    Article  Google Scholar 

  23. H.T. Kim, S.H. Kim, S. Nahm, J.D. Byun, Y. Kim, J. Am. Ceram. Soc. 82, 3043–3048 (1999)

    Article  Google Scholar 

  24. Y.C. Zhang, L.T. Li, Z.X. Yue, Z.L. Gui, Mater. Sci. Eng. B 99, 282–285 (2003)

    Article  Google Scholar 

  25. J.X. Tong, Q.L. Zhang, H. Yang, J.L. Zou, J. Am. Ceram. Soc. 90, 845–849 (2007)

    Article  Google Scholar 

  26. I.S. Cho, D.W. Kim, J.R. Kim, K.S. Hong, Ceram. Int. 30, 1181–1185 (2004)

    Article  Google Scholar 

  27. M.H. Kim, Y.H. Jeong, S. Nahm, H.T. Nahm, H.J. Lee, J. Eur. Ceram. Soc. 26, 2139–2142 (2006)

  28. D.H. Kang, K.C. Nam, H.J. Cha, J. Eur. Ceram. Soc. 26, 2117–2121 (2006)

    Article  Google Scholar 

  29. B.D. Silverman, Phys. Rev. 125, 1921–1930 (1962)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61671323) and Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education (Tianjin University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Zhang or Mi Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Liu, L., Zhao, Y. et al. Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics for LTCC application. J Mater Sci: Mater Electron 28, 5802–5806 (2017). https://doi.org/10.1007/s10854-016-6251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6251-1

Keywords

Navigation