Strong piezoelectricity and multiferroicity in BiFeO3–BaTiO3–NdCoO3 lead-free piezoelectric ceramics with high Curie temperature for current sensing application

  • Yongquan Guo
  • Tao Wang
  • Dongliang Shi
  • Ping Xiao
  • Qiaoji Zheng
  • Chenggang Xu
  • Kwok Ho LamEmail author
  • Dunmin LinEmail author


Lead-free piezoelectric and multiferroic ceramics of BiFeO3–BaTiO3–NdCoO3 were synthesized by a conventional solid-state reaction method and the structural, piezoelectric, multiferroic and magnetoelectric properties of the materials were investigated. All the ceramics can be well sintered at a low sintering temperature of 980 °C for 2 h. The introduction of NdCoO3 into BiFeO3–BaTiO3 induces a dramatic enhancement in the piezoelectricity, multiferroicity and magnetoelectric effect of the materials. After the addition of 1.0–3.0 mol% NdCoO3, the ceramics possess a morphotropic phase boundary of rhombohedral and orthorhombic phases and exhibit high Curie temperature (~486–605 °C), strong piezoelectricity, good ferroelectricity and excellent temperature stability of piezoelectricity. The greatly enhanced magnetism with M r = 0.4229 emu/g and M s = 2.7186 emu/g is obtained in the ceramic with 8.0 mol% NdCoO3, almost six times larger than that of an undoped ceramic. The ceramic with 2.0 mol% NdCoO3 shows a strong magnetoelectric effect (α 33 = 750 mV cm−1 Oe−1). The practical application potential of the present materials has also been preliminarily demonstrated by mimicking current monitoring. Our results suggest that the present ceramics may have potential applications in advanced lead-free piezoelectric and/or multiferroic devices.


BaTiO3 BiFeO3 Morphotropic Phase Boundary Electrical Insulation Magnetoelectric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the projects of National Material Science Foundation of China (Grant No. 51572178), Education Department of Sichuan Province (15ZB0032 and 15ZA0034), Science and Technology Bureau of Sichuan Province (2016JY0225). It was also partially supported from The Hong Kong Polytechnic University (1-ZVCG, 4-ZZDC).


  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics. (Academic, London, 1971)Google Scholar
  2. 2.
    F. Gao, R. Hong, J. Liu, Z. Li, L. Cheng, C. Tian, J. Alloys Compd. 475, 619 (2009)CrossRefGoogle Scholar
  3. 3.
    The European Parliament, the Council of the European Union, Off. J. Eur. Union 46, 19 (2003)Google Scholar
  4. 4.
    The European Parliament, the Council of the European Union, Off. J. Eur. Union 46, 24 (2003)Google Scholar
  5. 5.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Lin, D. Xiao, J. Zhu, P. Yu, J. Eur. Ceram. Soc. 26, 3247 (2006)CrossRefGoogle Scholar
  7. 7.
    X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, B. Zhang, X. Lou, J. Zhu, J. Mater. Chem. A 2, 4122 (2014)CrossRefGoogle Scholar
  8. 8.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  9. 9.
    S.H. Baek, C.M. Folkman, J.W. Park, L. Sanghan, W.B. Chung, T. Tomas, B. Chang, Adv. Mater. 23, 1621 (2011)CrossRefGoogle Scholar
  10. 10.
    Z. Li, Y. Shen, C. Yang, Y. Lei, Y. Guan, Y. Lin, D. Liu, C.W. Nan, J. Mater. Chem. A 1, 823 (2013)CrossRefGoogle Scholar
  11. 11.
    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, J. Appl. Phys. 97, 093903 (2005)CrossRefGoogle Scholar
  12. 12.
    S.K. Pradhann, B.K. Roul, Physica B 406, 3313 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Gautam, K. Singh, K. Sen, R.K. Kotnala, M. Singh, Mater. Lett. 65, 591 (2011)CrossRefGoogle Scholar
  14. 14.
    P.P. Lv, C.H. Yang, F.J. Geng, X.M. Jiang, G.D. Hub, J. Sol–Gel Sci. Technol. 78, 559 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Khesro, R. Boston, I. Sterianou, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 119, 054101 (2016)CrossRefGoogle Scholar
  16. 16.
    P.R. Vanga, R.V. Mangalaraja, M. Ashok, J. Mater. Sci. Mater. Electron. 27, 5699 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Xu, G. Ye, M. Zeng, Y. Deng, X. Chang, J. sun, Q. Wang, J. Mater. Sci. Mater. Electron. 26, 6907 (2015)CrossRefGoogle Scholar
  18. 18.
    X.L. Wen, Z. Chen, E.H. Liu, X. Lin, C.L. Chen, J. Alloys Compd. 678, 511 (2016)CrossRefGoogle Scholar
  19. 19.
    H.L. Zhang, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Cho, J.W. Jang, W. Zhang, W. Zhang, A. Suwardi, H. Wang, D. Wang, J.L. MacManus-Driscoll, Chem. Mater. 27, 6635 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Li, N. Jiang, K.H. Lam, Y. Guo, Q. Zheng, Q. Li, W. Zhou, Y. Wan, D. Lin, J. Am. Ceram. Soc. 97, 3602 (2014)CrossRefGoogle Scholar
  22. 22.
    S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Ghoshray, B. Bandyopadhyay, K. Ghoshray, Phys. Rev. B 69, 064424 (2004)CrossRefGoogle Scholar
  24. 24.
    C. Tealdi, L. Malavasi, F. Gozzo, C. Ritter, M.C. Mozzati, G. Chiodelli, G. Flor, Chem. Mater. 19, 4741 (2007)CrossRefGoogle Scholar
  25. 25.
    I. Sosnowska, M. Azuma, R. Przeniosło, D. Wardecki, W. Chen, K. Oka, Y. Shimakawa, Inorg. Chem. 52, 13269 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K.H. Lam, M. Liu, D. Lin, J. Mater. Chem. C 3, 5811 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, J. Eur. Ceram. Soc. 33, 3023 (2013)CrossRefGoogle Scholar
  28. 28.
    M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969)CrossRefGoogle Scholar
  29. 29.
    J. Rodriguez-Carvajal, Recent Developments of the Program FULLPROF. In CPD Newsletter 26, 12 (2001).
  30. 30.
    G. Arlt, N.A. Pertsev, J. Appl. Phys. 70, 2283 (1991)CrossRefGoogle Scholar
  31. 31.
    T.M. Kamel, G.D. With, J. Eur. Ceram. Soc. 28, 851 (2008)CrossRefGoogle Scholar
  32. 32.
    G. Dong, G. Tan, Y. Luo, W. Liu, A. Xia, H. Ren, Appl. Surf. Sci 305, 55 (2014)CrossRefGoogle Scholar
  33. 33.
    X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)CrossRefGoogle Scholar
  34. 34.
    M.M. Kumar, V.R. Palkar, K. Srinvivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)CrossRefGoogle Scholar
  35. 35.
    Y. Ito, W. Sakamoto, M. Moriya, T. Yogo, Ceram. Int. 39, S451 (2013)CrossRefGoogle Scholar
  36. 36.
    X. Xue, G. Tan, W. Liu, H. Hao, J. Alloys Compd. 604, 57 (2014)CrossRefGoogle Scholar
  37. 37.
    R.D. Shannon, Acta Cryst, 32, 751 (1976)CrossRefGoogle Scholar
  38. 38.
    L. Pintilie, K. Boldyreva, M. Alexe, D. Hesse, J. Appl. Phys. 103, 024101 (2008)CrossRefGoogle Scholar
  39. 39.
    X. Wang, J. Wu, X. Cheng, B. Zhang, D. Xiao, J. Zhu, J. Wang, X. Lou, J. Phys. D Appl. Phys. 46, 495305 (2013)CrossRefGoogle Scholar
  40. 40.
    C. Xu, D. Lin, K.W. Kwok, Solid State Sci. 10, 934 (2008)CrossRefGoogle Scholar
  41. 41.
    W. Lin, L. Fan, D. Lin, Q. Zheng, X. Fan, H. Sun, Curr. Appl. Phys. 13, 159 (2013)CrossRefGoogle Scholar
  42. 42.
    X. Chen, J. Wang, G. Yuan, D. Wu, J. Liu, J. Yin, Z. Liu, J. Alloys Compd. 541, 173 (2012)CrossRefGoogle Scholar
  43. 43.
    H. Yabuta, M. Shimada, T. Watanabe, J. Hayashi, M. Kubota, K. Miura, T. Fukui, I. Fujii, S. Wada, Jpn. J. Appl. Phys. 51, 09LD04 (2012)CrossRefGoogle Scholar
  44. 44.
    Y. Wan, Y. Li, Q. Li, W. Zhou, Q.J. Zheng, X.C. Wu, C.G. Xu, B.P. Zhu, D.M. Lin, J. Am. Ceram. Soc. 97, 1809 (2014)CrossRefGoogle Scholar
  45. 45.
    K. Uchino, S. Nomura, L.E. Cross, S.J. Tang, R.E. Newnham, J. Appl. Phys. 51, 1142 (1980)CrossRefGoogle Scholar
  46. 46.
    X. Chao, Z. Yang, L. Xiong, Z. Li, J. Alloys Compd. 509, 512 (2011)CrossRefGoogle Scholar
  47. 47.
    Q. Liao, S. Chen, X. Chu, F. Zeng, D. Guo, Sens. Actuator A 201, 222 (2013)CrossRefGoogle Scholar
  48. 48.
    D. Gao, K.W. Kwok, D. Lin, Curr. Appl. Phys. 11, S124 (2011)CrossRefGoogle Scholar
  49. 49.
    Z. Peng, Q. Chen, Y. Wang, D. Xin, D. Xiao, J. Zhu, Mater. Lett. 107, 14 (2013)CrossRefGoogle Scholar
  50. 50.
    H. Chen, X. Guo, Z. Cui, J. Zhai, Int. J. Appl. Ceram. Technol. 10, E151 (2013)CrossRefGoogle Scholar
  51. 51.
    D. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 102, 034102 (2007)CrossRefGoogle Scholar
  52. 52.
    D. Lin, C. Xu, Q. Zheng, Y. Wei, D. Gao, J. Mater. Sci. Mater. Electron. 20, 393 (2009)CrossRefGoogle Scholar
  53. 53.
    S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, L. Li, Curr. Appl. Phys. 11, S120 (2011)CrossRefGoogle Scholar
  54. 54.
    H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang, W. Li, Mater. Res. Bull. 47, 4233 (2012)CrossRefGoogle Scholar
  55. 55.
    X. Shan, C. Zhou, Z. Cen, H. Yang, Q. Zhou, W. Li, Ceram. Int. 39, 6707 (2013)CrossRefGoogle Scholar
  56. 56.
    Z. Cen, Z. Zhou, J. Cheng, X. Zhou, W. Li, C. Yan, S. Feng, Y. Liu, D. Lao, J. Alloys Compd. 567, 110 (2013)CrossRefGoogle Scholar
  57. 57.
    X. Zhou, C. Zhou, Q. Zhou, H. Yang, Z. Cen, J. Cheng, L. Cao, Q. Fan, J. Electron. Mater. 43, 755 (2014)CrossRefGoogle Scholar
  58. 58.
    D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008)CrossRefGoogle Scholar
  59. 59.
    M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998)CrossRefGoogle Scholar
  60. 60.
    G.A. Gehring, Ferroelectrics, 161, 275 (1994)CrossRefGoogle Scholar
  61. 61.
    J. Wang, M. Li, X. Liu, W. Liu, Z. Hub, S. Wang, J. Porous Mater. 20, 727 (2013)CrossRefGoogle Scholar
  62. 62.
    P.A. Joy, S.K. Date, J. Magn. Magn. Mater. 218, 229 (2000)CrossRefGoogle Scholar
  63. 63.
    G.S. Arya, R.K. Sharma, N.S. Negi, Mater. Lett. 93, 341 (2013)CrossRefGoogle Scholar
  64. 64.
    E.V. Ramana, A. Mahajan, M.P.F. Graca, A. Srinivas, M.A. Valente. J. Eur. Ceram. Soc. 34, 4201 (2014)CrossRefGoogle Scholar
  65. 65.
    E.V. Ramana, S.V. Suryanarayana, T. Bhima Sankaram, Solid State Sci. 12, 956 (2010)CrossRefGoogle Scholar
  66. 66.
    K. Kowal, E. Jartych, P. Guzdek, P. Stoch, B. Wodecka-Duś, A. Lisińska-Czekaj, D. Czekaj, Nukleonika 58, 57 (2013)Google Scholar
  67. 67.
    S.C. Mazumdar, M.N.I. Khan, M. Fakhrul Islam, A.K.M. Akther Hossain, J. Magn. Magn. Mater. 390, 61 (2015)CrossRefGoogle Scholar
  68. 68.
    R. Gupta, J. Shah, S. Chaudhary, R.K. Kotnala, J. Alloys Compd. 638, 115 (2015)CrossRefGoogle Scholar
  69. 69.
    M. Kumar, K.L. Yadav, J. Phys. Chem. Solids 68, 1791 (2007)CrossRefGoogle Scholar
  70. 70.
    V.S. Puli, D.K. Pradhan, S. Gollapudi, I. Coondoo, N. Panwar, S. Adireddy, D.B. Chrisey, R.S. Katiyar, J. Magn. Magn. Mater. 369, 9 (2014)CrossRefGoogle Scholar
  71. 71.
    S. Dong, J.G. Bai, J. Zhai, J. Li, G.Q. Lu, D. Viehland, S. Zhang, T.R. Shrout, Appl. Phys. Lett. 86, 182506 (2005)CrossRefGoogle Scholar
  72. 72.
    J. Zhang, P. Li, Y. Wen, W. He, A. Yang, C. Lu, J. Qiu, J. Wen, J. Yang, Y. Zhu, M. Yu, Rev. Sci. Instrum. 83, 115001 (2012)CrossRefGoogle Scholar
  73. 73.
    Z. Shi, Y. Tong, S. Deng, H. Xue, S. Yang, Y. Lu, C. Wang, X. Liu, Appl. Phys. Lett. 103, 032903 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yongquan Guo
    • 1
  • Tao Wang
    • 1
  • Dongliang Shi
    • 2
  • Ping Xiao
    • 1
  • Qiaoji Zheng
    • 1
  • Chenggang Xu
    • 1
  • Kwok Ho Lam
    • 2
    Email author
  • Dunmin Lin
    • 1
    Email author
  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations