Skip to main content
Log in

Microstructural evolution of 0.75PMN–0.25PT ferroelectrics synthesized by hydroxide co-precipitation method and their dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.75PMN–0.25PT, a relaxor ferroelectric composition has been synthesized by hydroxide co-precipitation method. In order to study the evolution of microstructure the composition under investigation has been sintered in the temperature range of 1000–1280 °C. Effects of sintering temperature on microstructural properties and hence on crystalline phase, density, dielectric, ferroelectric and piezoelectric properties of the 0.75PMN–0.25PT ceramics have been systematically investigated. It is observed that the 0.75PMN–0.25PT ceramics sintered at 1250 °C gives highest values of dielectric constant εmax and maximum polarization Pmax, while highest observed value of piezoelectric coefficient d33 is 480 pC/N at sintering temperature Ts equal to 1280 °C which are associated with the compact microstructure of the samples. In addition, the nature of phase transition as depicted from temperature dependent dielectric behavior has been analyzed in terms of diffusivity parameter δ and degree of diffuseness γ. The room temperature Raman spectroscopy technique has been used to identify the vibration modes in the PMN–PT. Raman spectra recorded as a function of temperature is used to understand the ferroelectric phase transition of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.P. Singh, A.K. Singh, D. Pandey, H. Sharma, O. Parkash, J. Mater. Res. 18, 2677 (2003)

    Article  Google Scholar 

  2. J. Kelly, M. Leonard, C. Tantigate, A. Safar, J. Am. Ceram. Soc. 80, 957 (1997)

    Article  Google Scholar 

  3. K. Singh, S. Band, Bull. Mater. Sci. 20, 265 (1997).

    Article  Google Scholar 

  4. D. Suh, D. Lee, N. Kim, J. Eur. Ceram. Soc. 22, 219 (2002)

    Article  Google Scholar 

  5. J. Park, Y. Kim, S. Park, J.-Korean Phys. 32, 967 (1998).

    Google Scholar 

  6. Z. Feng, X. Zhao, H. Luo, J. Appl. Phys. 100, 24104 (2006)

    Article  Google Scholar 

  7. K. Katayama, M. Abe, T. Akiba, H. Yanagida, J. Eur. Ceram. Soc. 5, 183 (1989)

    Article  Google Scholar 

  8. M. Alguero, C. Alemany, B. Jimenez, J. Holc, M. Kosec, L. Pardo, J. Eur. Ceram. Soc. 24, 937 (2004)

    Article  Google Scholar 

  9. S. Choi, R. Shrout, S. Jang, A. Bhalla, Ferroelectrics 100, 29 (1989)

    Article  Google Scholar 

  10. Z. Kutnjak, J. Petzelt, R. Blinc, Nature 441, 956 (2006)

    Article  Google Scholar 

  11. A.A. Bokov, Y.-H. Bing, W. Chen, Z.-G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya, E.V. Sahkar, Phys. Rev. B 68, 52102 (2003)

    Article  Google Scholar 

  12. A.A. Bokov, Z.-G. Ye, Appl. Phys. Lett. 77, 1888 (2000)

    Article  Google Scholar 

  13. A.A. Bokov, Z.G. Ye, Solid State Commun. 116, 105 (2000)

    Article  Google Scholar 

  14. Z.G. Ye, M. Dong, J. Appl. Phys. 87, 2312 (2000)

    Article  Google Scholar 

  15. Y. Kuang, M. Sadiq, S. Cochran, Z. Huang, Phys. Procedia 63, 182 (2015)

    Article  Google Scholar 

  16. A. Mergen, W.E. Lee, J. Eur. Ceram. Soc. 17, 1033 (1997)

    Article  Google Scholar 

  17. S.F. Wang, U. Kumar, W. Huebner, P. Marsh, H. Kankul, C.G. Oakley, in Proceedings 1992 IEEE international symposium on applications of ferroelectrics. p. 148, 1992

  18. R. Jimenez, H. Amorin, J. Ricote, J. Careaud, J.M. Kiat, B. Dkhil, J. Holc, M. Kosec, M. Alguero, Phys. Rev. B 78, 94103 (2008)

    Article  Google Scholar 

  19. C.A. Randall, A.D. Hilton, D.J. Barber, T.R. Shrout, J. Mater. Res. 8, 880 (1993)

    Article  Google Scholar 

  20. M. Michael, A. Sekar, A. Halliyal, J. Am. Ceram. Soc. 81, 380 (1998)

    Google Scholar 

  21. P.K. Panda, B. Sahoo, Mater. Chem. Phys. 93, 231 (2005)

    Article  Google Scholar 

  22. A.D. Sheikh, H.H. Kumar, V.L. Mathe, Solid State Sci. 12, 1534 (2010).

    Article  Google Scholar 

  23. M.T. Dove, Am. Mineral 82, 213 (1997)

    Article  Google Scholar 

  24. J.A. Lima, W. Paraguassu, P.T.C. Freire, A.G. Souza filho, C.W.A. Paschoal, J.M. Filho, A.L. Zanin, M.H. Lente, D. Garcia, J.A. Eiras, J. Raman Spectrosc. 40, 1144 (2009)

    Article  Google Scholar 

  25. B. Fu, Y. Yang, K. Gao, Y. Wang, Appl. Phys. Lett. 107, 42903 (2015)

    Article  Google Scholar 

  26. M.P. Thi, G. March, P. Colomban, J. Eur. Ceram. Soc. 25, 3335 (2005)

    Article  Google Scholar 

  27. A. Slodczyk, P. Colomban, M. Pham-Thi, J. Phys. Chem. Solids 69, 2503 (2008)

    Article  Google Scholar 

  28. Y.C. Liou, Mater. Sci. Eng. B 103, 281 (2003).

    Article  Google Scholar 

  29. L. Chen, W. Kong, J. Yao, B. Gao, Q. Zhang, J. Mater. Sci. 27, 1713 (2016)

    Google Scholar 

  30. S. Mahajan, O.P. Thakur, C. Prakash, Def. Sci. J. 57, 23 (2007)

    Article  Google Scholar 

  31. K.T. Zawilski, M.C.C. Custodio, R.C. DeMattei, S.G. Lee, R.G. Monteiro, H. Odagawa, R.S. Feigelson, J. Cryst. Growth 258, 353 (2003)

    Article  Google Scholar 

  32. V.R. Mudinepalli, L. Feng, W.-C. Lin, B.S. Murty, J. Adv. Ceram. 4, 46 (2015).

    Article  Google Scholar 

  33. A. Ianculescu, D. Berger, L. Mitoşeriu, L.P. Curecheriu, N. Drăgan, D. Crişan, E. Vasile, Ferroelectrics 369, 22 (2008).

    Article  Google Scholar 

  34. M.M. Sutar, A.N. Tarale, S.R. Jigajeni, S.B. Kulkarni, V.R. Reddy, P.B. Joshi, Solid State Sci. 14, 1064 (2012).

    Article  Google Scholar 

  35. S.H. Kshirsagar, A.N. Tarale, S.R. Jigajeni, D.J. Salunkhe, P.B. Joshi, Indian J. Pure. Appl. Phys. 53, 119 (2015)

    Google Scholar 

  36. X. Chao, Z. Yang, L. Wei, H. Ren, Phys. B 406, 1849 (2011)

    Article  Google Scholar 

  37. A. Slodczyk, P. Colomban, Materials (Basel) 3, 5007 (2010)

    Article  Google Scholar 

  38. A. Slodczyk, A Kania, P. Daniel, A. Ratuszna, J. Phys. D 38, 2910 (2005)

    Article  Google Scholar 

  39. K. Kamali, T.R. Ravindran, J. Phys. Chem. A 120, 1971 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. A. N. Tarale would like to acknowledge the UGC, New Delhi, India for the financial support under the scheme of Dr. D.S. Kothari postdoctoral fellowship (No. F4-2/2006(BSR)/PH/13–14/0087, dt08/08/2014). Authors are thankful to UGC-DAE-CSR, Indore for availing ferroelectric measurement facility. Authors are also thankful to Center for Nanostructured and Quantum System (CNQS), Savitribai Phule Pune University, Pune for the availing experimental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Mathe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarale, A.N., Premkumar, S., Reddy, V.R. et al. Microstructural evolution of 0.75PMN–0.25PT ferroelectrics synthesized by hydroxide co-precipitation method and their dielectric properties. J Mater Sci: Mater Electron 28, 5485–5497 (2017). https://doi.org/10.1007/s10854-016-6210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6210-x

Keywords

Navigation