Magnetic and Photo-catalyst CoFe2O4-CdS nanocomposites: Simple preparation of Ni, Co, Zn or Ag-doped CdS nanoparticles

  • Kambiz Hedayati
  • Sara Azarakhsh
  • Jilla Saffari
  • Davood Ghanbari
Article

Abstract

At the first step CoFe2O4 nanostructures were synthesized via a facile precipitation method without using any surfactant and capping agent in solvent of water. Then cadmium sulphides with various doping metals (Ni, Co, Zn and Ag) were prepared. Finally metal doped CoFe2O4-CdS nanocomposites were made by a fast chemical procedure. The effect of concentration, temperature and precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Vibrating sample magnetometer shows the ferromagnetic property of the ferrite nanostructures. The photocatalytic behaviour of CoFe2O4-CdS-metal doped nanocomposites was evaluated using the degradation of four azo dyes (acid black, acid brown, acid violet and acid blue) under ultraviolet light irradiation. The results introduce a nanocomposite with applicable magnetic and photocatalytic performance.

References

  1. 1.
    K. Hedayati, S. Azarakhsh, J. Saffari, D. Ghanbari, J. Mater. Sci. Mater. Electron 27, 8758 (2016).Google Scholar
  2. 2.
    S. Thanikaikarasan, T. Mahalingam, M. Raja, S. Velumani, Materials Science in Semiconductor Processing”, 37, 215 (2015).Google Scholar
  3. 3.
    R.K. Upadhyay, M. Sharma, D.K. Singh, S.S. Amritphale, N. Chandra, Sep. Purif. Technol. 88, 39 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Giberti, D. Casotti, G. Cruciani, B. Fabbri, A. Gaiardo, V. Guidi, C. Malagù, G. Zonta, S. Gherardi, “Sensors and Actuators B:chemical”, 207, 504 (2015).Google Scholar
  5. 5.
    S.J. Bao, Y. Li, C.M. Li, Q. Bao, Q. Lu,. Guo, Crystal Growth and Design, 8, 3745(2008).Google Scholar
  6. 6.
    A.V. Isarov, J. Chrysochoos, Langmuir 13, 3142 (1997)CrossRefGoogle Scholar
  7. 7.
    G.D. Rees, R.E. Gowing, S.J. Hammond, B.H. Robinson, Langmuir 15, 1993 (1997)CrossRefGoogle Scholar
  8. 8.
    W.S. Jang, P. Koo, K. Bryson, S. Narayanan, A. Sandy, T. P. Russell, G. S, Mochrie. Macromolecules 47, 6483 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Prasad, K. Jagadeesh, P. S. Rao, D. L. Sastry, S. Jose, K. V. Babu, Advances in Engineering & Technology, 9, 84–90 (2016).Google Scholar
  10. 10.
    H.R. Pouretedal, H. Eskandari, M.H. Keshavarz, A. Semnani, Acta Chim. Slov 56, 353 (2009)Google Scholar
  11. 11.
    J.K. Saluja, Y. Parganiha, N. Tiwari, V. Dubey, R. Tiwari, A. Prabhath, Optik - International Journal for Light and Electron Optics, 127, 7958 (2016)Google Scholar
  12. 12.
    N. Elmifard, R. Fazaeli, R. Ghiasi, Chem. Eng. Technol, 39, 149 (2016)Google Scholar
  13. 13.
    M.A. Malik, P. O’Brien, N. Revaprasadu, Mater. Chem, 11, 2382 (2001)Google Scholar
  14. 14.
    A. Rezaei, G. Nabiyouni, D. Ghanbari, J. Mater. Sci. Mater. Electron, 27, 11339 (2016)Google Scholar
  15. 15.
    G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio, Magnetism and Magnetic Materials, 311, 10 (2007)Google Scholar
  16. 16.
    L. Zhao, H. Zhang, Y. Xing, S. Song, S. Yu, W. Shi, X. Guo, J. Yang, Y. Lei, F. Cao, Solid State. Chemistry 181, 245 (2008)Google Scholar
  17. 17.
    J. Lee, J.Y. Park, C.S. Kim, materials science, 33, 3965 (1998)Google Scholar
  18. 18.
    R.M. Mohamed, M.M. Rashad, F.A. Haraz, W. Sigmund, “Magnetism and Magnetic Materials, 322, 2058 (2010)Google Scholar
  19. 19.
    A.C. Lima, A.P.S. Peres, J.H. Araújo, M.A. Morales, S.N. Medeiros, J.M. Soares, D.M.A. Melo, A.S. Carriço, “Materials Letters 145, 56 (2015)CrossRefGoogle Scholar
  20. 20.
    A.L. Ortega, E. Lottini, C.d.J. Fernaìndez, C. Sangregorio, “Chem. Mater 27, 4048 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, “Am. Chem. Soc 122, 6263 (2000)CrossRefGoogle Scholar
  22. 22.
    G. Nabiyouni, D. Ghanbari, S. Karimzadeh, B. Samani Ghalehtaki, J Nanostruct 4, 467 (2014)Google Scholar
  23. 23.
    S. Ammar, A. Helfen, N. Jouini, F. FieÂvet, I. Rosenman, F. Villain, P. Molinie, M. Danot, “Mater. Chem, 11, 186–192 (2001)Google Scholar
  24. 24.
    T. Prozorov, P. Palo, L. Wang, M.N. Hamilton, D. Jones, D. Orr, S.K. Mallapragada, B. Narasimhan, P.C. Canfield, R. Prozorov, American Chemical. Society 3, 228–233 (2007)Google Scholar
  25. 25.
    A.T. Ngo, M.P. Pileni, Adv. Mater 12, 276–279 (2000)CrossRefGoogle Scholar
  26. 26.
    D. Ghanbari, S. Sharifi, A. Naraghi, G. Nabiyouni, J. Mater. Sci. Mater. Electron, 27, 5315 (2016)Google Scholar
  27. 27.
    A. Shabani, G. Nabiyouni, J. Saffari, D. Ghanbari, J. Mater. Sci. Mater. Electron 27, 8661 (2016)Google Scholar
  28. 28.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J. Mater. Sci. Mater. Electron 27, 11017 (2016)Google Scholar
  29. 29.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J. Mater. Sci. Mater. Electron, 27, 9962 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kambiz Hedayati
    • 1
  • Sara Azarakhsh
    • 1
  • Jilla Saffari
    • 2
  • Davood Ghanbari
    • 3
  1. 1.Department of ScienceArak University of TechnologyArakIran
  2. 2.Department of Chemistry, Zahedan BranchIslamic Azad UniversityZahedanIran
  3. 3.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations