Skip to main content
Log in

Degradation of water-soluble methyl orange in visible light with the use of silver and copper co-doped TiO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, removal of methyl orange in aqueous media and visible light was investigated by using co-doped silver and copper TiO2 nanoparticles. Field emission scanning electron microscopy (FESEM), dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) and atomic force microscopy (AFM) were used for characterization of prepared nanoparticles. TiO2 nanoparticles were prepared by sol–gel method. Also silver and copper were doped in nanoparticles by impregnation method. Red shift occurred in co-doped Ag,Cu/TiO2 nanoparticles and exhibited highest photocatalytic activity compared to pure TiO2 nanoparticles. Optimum mole percentage of copper and silver for co-doped TiO2 nanoparticles were 0.03 and 1.3 respectively. Optimum co-doped TiO2 nanoparticles showed 50% degradation in the visible light within 40 min. The change in the diffraction angle (2θ), lattice parameter and the reduction in X-ray diffraction intensity, are the factors that proved silver and copper co-doped in TiO2 nanoparticles completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Wunderlich, T. Oekermann, L. Miao, J. Ceram. Process Res. 5, 343–354 (2004)

    Google Scholar 

  2. S.S. Hong, M.S. Lee, C.S. Ju, G.D. Lee, S.S. Park, K.T. Lim, Catal. Today 9395, 871–876 (2004)

    Article  Google Scholar 

  3. M.A. Behnajady, H. Eskandarloo, N. Modirshahla, M. Shokri, Photobiol. 87, 1002–1008 (2011)

    Article  Google Scholar 

  4. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. 1, 1–21 (2000)

    Article  Google Scholar 

  5. A.T. Paxton, L. Thiên-Nga, Phys. Rev. B 57, 1579–1584 (1998)

    Article  Google Scholar 

  6. S. Banerjee, J. Gopal, P. Muraleedharan, Curr. Sci. 90, 1378–1383 (2006)

    Google Scholar 

  7. Z. Wang, W. Ma, C. Chen, H. Ji, J. Zhao, J. Chem. Eng. 170, 353–362 (2011)

    Article  Google Scholar 

  8. J. Saien, S. Khezrianjoo, J. Hazard. Mater. 157, 269–276 (2008)

    Article  Google Scholar 

  9. M.A. Rauf, S.S. Ashraf, J. Chem. Eng. 151, 10–18 (2009)

    Article  Google Scholar 

  10. S.N. Nalwa, Handbook of advanced electronic and photonic materials and devices, vol. 5, (Acadmic press, Cambridge, 2001)

    Google Scholar 

  11. H. Han, R. Ba, Ind. Eng. Chem Res. 48, 2891–2898 (2009)

  12. O. Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  13. M.R. Hoffmann, S.T. Martin, W. Choi, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  14. A. Mills, A.J. Hunte, J Photochem. Photobiol. A. Chem. 108, 1–35 (1997)

    Article  Google Scholar 

  15. Z. Ambrus, N. Balazs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, K. Mogyorosi, Appl. Catal. B Environ. 81, 27–37 (2008)

    Article  Google Scholar 

  16. K. Song, J. Zhou, J. Bao, Y. Feng, J. Am. Ceram. Soc. 91, 1369–1371 (2008)

    Article  Google Scholar 

  17. X.H. Wang, J.G. Li, H.K. Amiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 110, 6804–6809 (2006)

    Article  Google Scholar 

  18. C.C. Chan, C.C. Chang, W.C. Hsu, S.K. Wang, J. Lin, J. Chem. Eng. 152, 492–497 (2009)

    Article  Google Scholar 

  19. O. Carp, C.L. Huisman, A. Reller, Prog. Sol. Sta. Chem. 32, 33–117 (2004)

    Article  Google Scholar 

  20. G.K. Mor, O.K. Varghese, M. Paulose, Sol. Eng. Mater. Solar Cell 90, 2011–2075 (2006)

    Article  Google Scholar 

  21. C. Burda, Y. Lou, X. Chen, Nano Lett. 3, 1049–1051 (2003)

    Article  Google Scholar 

  22. Y. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669–13679 (1994)

    Article  Google Scholar 

  23. K. Song, J. Zhou, J. Bao, J. Am. Ceram. Soc. 91, 1369–1371 (2008)

    Article  Google Scholar 

  24. A.A. Ashkarran, H. Hamidinezhad, H. Haddadi, Appl. Surf. Sci. 301, 338–345 (2014)

    Article  Google Scholar 

  25. S. Naraginti, F.B. Stephen, A. Radhakrishnan, A. Sivakumar, Mol. Biomol. Spec. 135, 814–819 (2015)

    Article  Google Scholar 

  26. Y. Yamada S. Shikano, T. Akita, S. Fukuzumi, Catal. Sci. Technol. 5, 979–988 (2015)

    Article  Google Scholar 

  27. J. Talat-Mehrabad, M. Khosravi, N. Modirshahla, M.A. Behnajady, Des. Water. Treat. 57, 10451–10461 (2016)

    Article  Google Scholar 

  28. S. Saha, J.M. Wang, A. Pal, Sep. Pur. Technol. 89, 147–159 (2012)

    Article  Google Scholar 

  29. R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Ind. Eng. Chem. Res. 45, 15 (2006)

    Article  Google Scholar 

  30. B. Ohtani, Y. Ogawa, S. Nishimoto, J. Phys. Chem. B 101, 3746–3752 (1993)

    Article  Google Scholar 

  31. N.N. Ilkhechi, B.K. Kaleji, J. Sol Gel. Sci. Technol. 69, 351–356 (2014)

    Article  Google Scholar 

  32. I. Kostov Minerology, 3rd edn. Nauka, Izkustia, Sofia (1973)

  33. Q. Wang, S. Xu, F. Shen, Appl. Surf. Sci. 257, 7671–7677 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mozammel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, J., Mozammel, M. Degradation of water-soluble methyl orange in visible light with the use of silver and copper co-doped TiO2 nanoparticles. J Mater Sci: Mater Electron 28, 5336–5343 (2017). https://doi.org/10.1007/s10854-016-6192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6192-8

Keywords

Navigation