Skip to main content
Log in

Effects of Ti/Nb stoichiometry on the microstructure and dielectric responses of NaCu3Ti3−xNb1+xO12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different stoichiometry of Ti/Nb in NaCu3Ti3−xNb1+xO12 ceramics were prepared by solid state synthesis. Microstructure and dielectric properties of NaCu3Ti3−xNb1+xO12 ceramics were investigated. The mean grain size decreases with increasing Nb content. Dielectric constant (ε′) and dielectric loss (tanδ) are changed dramatically with different stoichiometry of Ti/Nb. Two relaxation processes were identified for all the samples, one at low frequency region (<1 kHz) and the other one at 0.1 MHz region. Peaks of tanδ depressed and shifted to higher frequency as Nb content increased. Impedance spectroscopy analysis reveals that NaCu3Ti3−xNb1+xO12 ceramics are electrically heterogeneous, consisting of semiconducting grains and insulating grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A. Subramanian, L. Dong, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    Article  Google Scholar 

  2. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321–1323 (2002)

    Article  Google Scholar 

  3. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217–220 (2000)

    Article  Google Scholar 

  4. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673–676 (2001)

    Article  Google Scholar 

  5. L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B Condens. Matter 65, 214112 (2002)

    Article  Google Scholar 

  6. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, Phys. Rev. B Condens. Matter 70, 172102 (2004)

    Article  Google Scholar 

  7. M.H. Cohen, J.B. Neaton, L.X. He, D. Vanderbilt, J. Appl. Phys. 94, 3299–3306 (2003)

    Article  Google Scholar 

  8. S.Y. Chung, I.D. Kim, S.J. Kang, Nat. Mater. 3, 774–778 (2004)

    Article  Google Scholar 

  9. D. Fu, H. Taniguchi, T. Taniyama, M. Itoh, S.Y. Koshihara, Chem. Mater. 20, 1694–1698 (2008)

    Article  Google Scholar 

  10. W. Li, R.W. Schwartz, Phys. Rev. B Condens. Matter 75, 012104 (2007)

    Article  Google Scholar 

  11. N. Zhao, P. Liang, L. Wei, Ceram. Int. 41, 8501–8510 (2015)

    Article  Google Scholar 

  12. M. Avdeev, V.B. Nalbandyan, Inorg. Chem. 45, 2217–2220 (2006)

    Article  Google Scholar 

  13. C.H. Mu, P. Liu, Y. He, J. Alloy Compd. 471, 137–141 (2009)

    Article  Google Scholar 

  14. H. Ren, P. Liang, Z. Yang, Mater. Res. Bull. 45, 1608–1613 (2009)

    Article  Google Scholar 

  15. W. Hao, J. Zhang, Y. Tan, J. Am. Ceram. Soc. 94, 1067–1072 (2010)

    Article  Google Scholar 

  16. N. Sangwong, W. Somphan, P. Thongbai, Appl. Phys. A 108, 385–392 (2012).

    Article  Google Scholar 

  17. Y. Liu, W. Wang, J. Huang, Ceram. Int. 39, 9201–9206 (2013).

    Article  Google Scholar 

  18. T.T. Fang, L.T. Mei, H.F. Ho, Acta. Mater. 54, 2867–2875 (2006)

    Article  Google Scholar 

  19. K. Chen, Y.F. Liu, F. Gao, Solid State Commun. 141, 440–444 (2007)

    Article  Google Scholar 

  20. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  Google Scholar 

  21. R. Yu, H. Xue, Z. Cao, C. La, Z. Xiong, J. Eur. Ceram. Soc. 32, 1245–1249 (2012)

    Article  Google Scholar 

  22. P. Thongbai, J. Jumpatam, T. Yamwong, J. Eur. Ceram. Soc. 32, 2423–2430 (2012)

    Article  Google Scholar 

  23. M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, J. Alloy. Compd. 493, 486–492 (2010)

    Article  Google Scholar 

  24. Y. Liu, Q. Chen, X. Zhao, J. Mater. Sci. Mater. Electron. 25, 1547–1552 (2014)

    Article  Google Scholar 

  25. M.N. Rahaman, R. Manalert, J. Eur. Ceram. Soc. 18, 1063–1071 (1998)

    Article  Google Scholar 

  26. J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)

    Article  Google Scholar 

  27. M. Li, Z. Shen, M. Nygren, J. Appl. Phys. 106, 104106 (2009)

    Article  Google Scholar 

  28. J.Y. Li, X.T. Zhao, S.T. Li, J. Appl. Phys. 108, 104104 (2010)

    Article  Google Scholar 

  29. L. Bai, Y. Wu, L. Zhang, J. Alloy Compd. 661, 6–13 (2016)

    Article  Google Scholar 

  30. F. Amaral, L.C. Costa, M.A. Valente, J. Non-Cryst. Solids 357, 775–781 (2011)

    Article  Google Scholar 

  31. T.T. Fang, L.T. Mei, J. Am. Ceram. Soc. 90, 638–640 (2007)

    Article  Google Scholar 

  32. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Article  Google Scholar 

  33. C. Mu, H. Zhang, Y. He et al., J. Phys. D Appl. Phys. 42, 175410 (2009)

    Article  Google Scholar 

  34. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, Appl. Phys. Lett. 91, 022910 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, W., Zang, X. et al. Effects of Ti/Nb stoichiometry on the microstructure and dielectric responses of NaCu3Ti3−xNb1+xO12 ceramics. J Mater Sci: Mater Electron 28, 5323–5328 (2017). https://doi.org/10.1007/s10854-016-6190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6190-x

Keywords

Navigation