Skip to main content
Log in

Influence of sintering conditions on Ni internal electrode and PTCR effect of the multilayer (Ba1.005−x Y x )TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of sintering conditions on the positive temperature coefficient of resistance (PTCR) characteristics and the Ni internal electrode in multilayer (Ba1.005−x Y x )TiO3 (BYT) ceramics is investigated. The BYT ceramics were fired at 1160–1240 °C for 2 h in a reducing atmosphere and then reoxidised at 500–900 °C for 1–2 h. Results indicate that the room-temperature (RT) resistance for BYT ceramics—which were reoxidised at 750 °C for 2 h after sintering at different temperatures—decreased quickly when the sintering temperature was increased from 1160 to 1240 °C. As the firing temperature increased, the sample resistance jump [Lg(R max/R min)] increased initially and then decreased. In addition, the reoxidation temperature effect on the electrical properties and the PTCR effect on the specimens were also studied. Finally, the BYT ceramics showed a significant PTCR characteristic. They obtained a resistance jump greater than 3.06 orders of magnitude and a low RT resistance of 0.25 Ω at a 750 °C reoxidated temperature for 2 h after sintering at 1180 °C for 2 h in a reducing atmosphere. In addition, the sintering temperature influence on the Ni internal electrode surface microstructure is investigated using FSEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Illingsworth, H.M. Ai-Allak, A.W. Brinkman, J. Woods, J. Appl. Phys. 67, 2088–2092 (1990)

    Article  Google Scholar 

  2. W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964)

    Article  Google Scholar 

  3. W. Heywang, Solid-State Electron 3, 51 (1961)

    Article  Google Scholar 

  4. G.H. Jonker, Solid-State Electron 7, 895–903 (1964)

    Article  Google Scholar 

  5. A. Kanda, S. Tashiro, H. Igarashi, Jpn. J. Appl. Phys 33, 5431–5434 (1994)

    Article  Google Scholar 

  6. H. Niimi, K. Mihara, Y. Sakabe, M. Kuwabara, Jpn. J. Appl. Phys. 46(10 A), 6715–6718 (2007)

    Article  Google Scholar 

  7. H. Niimi, A. Hikone, Ando and Omihachiman, U.S. Patent 7,348,873 B2 (2008)

  8. P.H. Xiang, H. Harinaka, H. Takeda, T. Nishida, K. Uchiyama, T. Shiosaki, J. Appl. Phys. 104, 094108 (2008)

    Article  Google Scholar 

  9. W.H. Yang, Y.P. Pu, X.L. Chen, J.F. Wang, J. Phys. Conference Series 152, 012040 (2009)

    Article  Google Scholar 

  10. Z.C. Lia, H. Zhang, X.D. Zou, Mater. Sci. Eng. B 116, 35 (2005)

    Article  Google Scholar 

  11. Y.K. Chung, S.C. Choi, J. Korean. Chem. Soc. 46, 330–335 (2009)

    Google Scholar 

  12. M. Kuwabara, Commun. ACM. C-170–C-171 (1981)

  13. V.N. Shut, S.V. Kostomarov, A.V. Gavrilov, Inorg. Mater. 44(8), 905–910 (2008)

    Article  Google Scholar 

  14. M. Kuwabara, J. Am. Ceram. Soc. 64(11), 639–644 (1981)

    Article  Google Scholar 

  15. H. Niimi, K. Mihara, Y. Sakabe, J. Am. Ceram. Soc. 90(6), 1817–1821 (2007)

    Article  Google Scholar 

  16. X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong, D.C. Zhao, J Mater Sci Mater. Electron 23, 2202–2209 (2012)

    Article  Google Scholar 

  17. X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong and Y.X. Qin, J. Phys. D Appl. Phys. 45(7pp), 385306 (2012)

    Article  Google Scholar 

  18. H.S. Gopalakrishnamurthy, M.S. Rao, T.R.N. Kutty, J. Inorg. Nucl. Chem. 37, 891–898 (1975)

    Article  Google Scholar 

  19. W.S. Jung, B.K. Min, J. Park, D.H. Yoon, Ceram. Int. 37, 669–672 (2011)

    Article  Google Scholar 

  20. S. Chatterjee, B.D. Stojanovic, H.S. Maiti, Mater. Chem. Phys. 78, 702–710 (2003)

    Article  Google Scholar 

  21. V.N. Shut, S.V. Kostomarov, A.V. Gavrilov, Neorg. Mater. 44(8), 1019–1024 (2008).

    Article  Google Scholar 

  22. K. Nozaki, M. Kawaguchi, K. Sato, M. Kuwabara, J. Mater. Sci 30, 3395–3400 (1995)

    Article  Google Scholar 

  23. X.X. Cheng, D.X. Zhou, Q.Y. Fu, H.N. Cui, J. Mater. Sci. Mater. Electron 25, 1109 (2014)

    Google Scholar 

  24. M. Kuwabara, J. Am. Ceram. Soc. 64, 639–644 (1981)

    Article  Google Scholar 

  25. T. Dechakupt, G. Yang, C.A. Randall, S.T. McKinstryw, J. Am. Ceram. Soc. 91, 1845–1850 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51402258), the Natural Science Foundation of Guangdong Province (No. 2015A030313706), the Science and Technology Planning Project of Guangdong Province (No. 2014A010105056), the Characteristic Creative Project in University of Guangdong Province (No. 2014KTSCX189), the Science and Technology Planning Project of Zhaoqing City (No. 2015B010402003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuxin Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Li, X. & Cui, H. Influence of sintering conditions on Ni internal electrode and PTCR effect of the multilayer (Ba1.005−x Y x )TiO3 ceramics. J Mater Sci: Mater Electron 28, 5200–5206 (2017). https://doi.org/10.1007/s10854-016-6176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6176-8

Keywords

Navigation