A flexible electrode based on recycled paper pulp and reduced graphene oxide composite

Abstract

In this work, a facile and scalable method to produce cellulose based flexible electrodes is introduced. Composite paper electrodes from recycled paper pulp and graphene oxide (GO) were fabricated by solvent casting at room temperature. Electrical conductivity and surface chemistry of the nanocomposite samples were tuned by chemical reduction of GO. Contact angle measurements showed a change in water droplet angle from 0° to 89° depending on the GO content and degree of reduction. Electrical measurements depicted high electrical conductivity with an ideal Ohmic behavior for the composite paper electrodes. Sheet resistance of the sample containing 4 wt% of reduced GO (rGO) was 1.649 × 103 Ω/□ which is 5 orders of magnitude higher than paper pulp. The obtained sheet resistance for the sample with 16 wt% rGO was remarkably high for cellulose based conductive electrode compared with previously reported data. Moreover, the sample containing only 0.5 wt% of rGO showed 40% higher modulus than the neat recycled paper in tension. The resultant nanocomposite can be introduced as a highly conductive and low cost flexible electrode.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y.-C. Lai, B.-W. Ye, C.-F. Lu, C.-T. Chen, M.-H. Jao, W.-F. Su, W.-Y. Hung, T.-Y. Lin, Y.-F. Chen, Adv. Funct. Mater. 26, 1286 (2016)

    Article  Google Scholar 

  2. 2.

    M.K. Choi, I. Park, D.C. Kim, E. Joh, O.K. Park, J. Kim, M. Kim, C. Choi, J. Yang, W. Kyoung, Adv. Funct. Mater. 25, 7109 (2015)

    Article  Google Scholar 

  3. 3.

    L. Du, P. Yang, X. Yu, P. Liu, J. Song, W. Mai, J. Mater. Chem. A 2, 17561 (2014)

    Article  Google Scholar 

  4. 4.

    H. Koga, H. Tonomura, M. Nogi, K. Suganuma, Y. Nishina, Green Chem. 18, 1117 (2016)

    Article  Google Scholar 

  5. 5.

    J. Chen, H. Bi, S. Sun, Y. Tang, W. Zhao, T. Lin, D. Wan, F. Huang, X. Zhou, X. Xie, ACS Appl. Mater. Interfaces 5, 1408 (2013)

    Article  Google Scholar 

  6. 6.

    Y. Zhang, Y. Wang, T. Cheng, W. Lai, H. Pang, W. Huang, Chem. Soc. Rev. 44, 5181 (2015)

    Article  Google Scholar 

  7. 7.

    L. Mao, M. Li, J. Xue, J. Wang. RSC Adv. 6, 2951 (2016)

    Article  Google Scholar 

  8. 8.

    A. Kafy, K.K. Sadasivuni, H.-C. Kim, A. Akthera, J. Kim, Phys. Chem. Chem. Phys. 17, 5923 (2015)

    Article  Google Scholar 

  9. 9.

    W. Liu, X. Yan, J. Lang, C. Peng, Q. Xue, J. Mater. Chem. 22, 17245 (2012)

    Article  Google Scholar 

  10. 10.

    Y. Kang, Y. Li, F. Hou, Y. Wen, D. Su, Nanoscale 4, 3248 (2012)

    Article  Google Scholar 

  11. 11.

    P. Yue, S. Tricard, S. He, N. Wang, J. Zhao, J. Fang, W. Shen, Electroanalysis 28, 1340 (2016)

    Article  Google Scholar 

  12. 12.

    J. Liu, Z. He, J. Xue, T. Thatt, Y. Tan, J. Mater. Chem. B 2, 2478 (2014)

    Article  Google Scholar 

  13. 13.

    A. Razaq, M.H. Asif, R. Kalsoom, A. Farooq Khan, M.S. Awan, S. Ishrat, S.M. Ramay, J. Appl. Polym. Sci. 132, 42293 (2015)

    Google Scholar 

  14. 14.

    S. Yun, J. Kim, Synth. Metals 158, 521 (2008)

    Article  Google Scholar 

  15. 15.

    A. Kafy, K.K. Sadasivuni, A. Akther, S.-K. Min, J. Kim, Mater. Lett. 159, 20 (2015)

    Article  Google Scholar 

  16. 16.

    Z. Gui, H. Zhu, E. Gillette, X. Han, G.W. Rubloff, L. Hu, S.B. Lee, ACS nano 7, 6037 (2013)

    Article  Google Scholar 

  17. 17.

    Z. Shi, G.O. Phillips, G. Yang, Nanoscale 5, 3194 (2013)

    Article  Google Scholar 

  18. 18.

    Y. Beeran, V. Bobnar, S. Gorgieva, Y. Grohens, M. Finšgar, S. Thomas, V. Kokol, RSC Adv. 6, 49138 (2016)

    Article  Google Scholar 

  19. 19.

    J. Chen, J. Xu, K. Wang, X. Qian, R. Sun, ACS Appl. Mater. Interfaces 7, 15641 (2015)

    Article  Google Scholar 

  20. 20.

    Y.-Q. Li, T. Yu, T.-Y. Yang, L.-X. Zheng, K. Liao, Adv. Mater. 24, 3426 (2012)

    Article  Google Scholar 

  21. 21.

    M. Terrones, O. Martín, M. González, J. Pozuelo, B. Serrano, J.C. Cabanelas, S.M. Vega-Díaz, J. Baselga, Adv. Mater. 23, 5302 (2011)

    Article  Google Scholar 

  22. 22.

    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, S.K. Kim, Chem. Rev. 112, 6156 (2012)

    Article  Google Scholar 

  23. 23.

    S. Sabury, S.H. Kazemi, F. Sharif, Mater. Sci. Eng. C 49, 297 (2015)

    Article  Google Scholar 

  24. 24.

    J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, ACS nano 4, 5019 (2010)

    Article  Google Scholar 

  25. 25.

    Y. Ling, X. Li, S. Zhou, X. Wang, R. Sun, J. Mater. Chem. A 3, 7422 (2015)

    Article  Google Scholar 

  26. 26.

    Z. Weng, Y. Su, D.-W. Wang, F. Li, J. Du, H.-M. Cheng, Adv. Energy Mater 1, 917 (2011)

    Article  Google Scholar 

  27. 27.

    T.-N. Ye, W.-J. Feng, B. Zhang, M. Xu, L.-B. Lv, J. Su, X. Wei, K.-X. Wang, X.-H. Li, J.-S. Chen, J. Mater. Chem. A 3, 13926 (2015)

    Article  Google Scholar 

  28. 28.

    M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Chem. Mater. 19, 4396 (2007)

    Article  Google Scholar 

  29. 29.

    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  30. 30.

    H. Mianehrow, M.H.M. Moghadam, F. Sharif, S. Mazinani, Int. J. Pharm. 484, 276 (2015)

    Article  Google Scholar 

  31. 31.

    H. Mianehrow, R. Afshari, S. Mazinani, F. Sharif, M. Abdouss, Int. J. Pharm. 509, 400 (2016)

    Article  Google Scholar 

  32. 32.

    Y. Huang, M. Zhu, W. Meng, Y. Fu, Z. Wang, Y. Huang, Z. Peia, C. Zhi, RSC Adv. 5, 33981 (2015)

    Article  Google Scholar 

  33. 33.

    L. Fan, N. Zhang, K. Sun, Chem. Comm. 50, 6789 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Sharif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 455 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mianehrow, H., Sabury, S., Bazargan, A. et al. A flexible electrode based on recycled paper pulp and reduced graphene oxide composite. J Mater Sci: Mater Electron 28, 4990–4996 (2017). https://doi.org/10.1007/s10854-016-6153-2

Download citation

Keywords

  • Graphene Oxide
  • Cellulose Fiber
  • Sheet Resistance
  • Reduce Graphene Oxide
  • Paper Pulp