Skip to main content
Log in

Effect of thin gold/nickel coating on the microstructure, wettability and hardness of lead-free tin–bismuth–silver solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper investigates the coating thickness and surface morphology of gold/nickel (Au/Ni) layer on copper (Cu) substrate. A cross-sectioned SEM analysis confirmed that the Au/Ni coating was uniform. The top Au layer with average thickness of 0.7 µm appeared to have a very smooth surface without any defect such as cracks and delamination. However, the thin Au/Ni coating greatly influenced the interfacial structure and material properties of electronic interconnections. In the reference Cu substrate/Sn–Bi–Ag solder system, an island-shaped Cu6Sn5 IMC layer at the interface could be clearly observed at the initial reaction stage. After a prolong reaction, a very thin Cu3Sn IMC layer was formed with excessive growth of the Cu6Sn5 IMC layer which can deteriorate the electronic interconnection life-span. However, in the Au/Ni coated substrate/solder system, a very thin scallop-shaped ternary Ni3Sn4 IMC layer formed without the Cu3Sn IMC layer, indicating that the Au/Ni coating hindered the growth of the IMC layer, which consequently changed the activation energies and refined the microstructure. Additionally, the overall micro-hardness of the Au/Ni coated substrate/solder system is higher than that of the reference solder system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.C. Chan, D. Yang, Prog. Mater Sci. 55, 428 (2010)

    Article  Google Scholar 

  2. A.K. Gain, L. Zhang, J. Mater. Sci.: Mater. Electron. 27, 7524 (2016)

    Google Scholar 

  3. F. Zhu, H. Zhang, R. Guan, S. Liu, J. Mater. Sci.: Mater. Electron. 17, 379 (2006)

    Google Scholar 

  4. X. Zhu, H. Kotadia, S. Xu, H. Lu, S.H. Mannan, C. Bailey, Y.C. Chan, Thin Solid Films 565, 193 (2014)

    Article  Google Scholar 

  5. M. Abtew, G. Selvaduray, Mater. Sci. Eng., R 27, 95 (2000)

    Article  Google Scholar 

  6. A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, G. Saad, Mater. Sci. Eng., A 603, 1 (2014)

    Article  Google Scholar 

  7. P. Liu, P. Yao, J. Liu, J. Alloys Compd. 470, 188 (2009)

    Article  Google Scholar 

  8. C.K. Chung, Y.J. Chen, C.C. Li, C.R. Kao, Thin Solid Films 520, 5346 (2012)

    Article  Google Scholar 

  9. S. Siau, J.D. Baets, A.V. Calster, L. Heremans, S. Tanghe, Microelectron. Reliab. 45, 675 (2005)

    Article  Google Scholar 

  10. B.B. Buyukbay, N.N. Ciliz, G.E. Goren, A. Mammadov, Resour. Conserv. Recycl. 54(1), 744 (2010)

    Article  Google Scholar 

  11. M. Yang, S. Yang, H. Ji, Y.H. Ko, C.W. Lee, J. Wu, M. Li, J. Mater. Process. Technol. 236, 84 (2016)

    Article  Google Scholar 

  12. A.K. Gain, Y.C. Chan, Intermetallics 29, 48 (2012)

    Article  Google Scholar 

  13. W. Peng, E. Monlevade, M.E. Marques, Microelectron. Realib. 47, 2161 (2007)

    Article  Google Scholar 

  14. V.M.F. Marques, C. Johnston, P.S. Grant, J. Alloys Compd. 613, 387 (2014)

    Article  Google Scholar 

  15. A.K. Gain, L. Zhang, J. Mater. Sci.: Mater. Electron. 27, 781 (2016)

    Google Scholar 

  16. K.K. Mohan, V. Kripesh, A.A.O. Tay, J. Alloys Compd. 455, 148 (2008)

    Article  Google Scholar 

  17. J. Keller, D. Baither, U. Wilke, G. Schmitz, Acta Mater. 59, 2731 (2011)

    Article  Google Scholar 

  18. F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, G. Ennas, J. Alloys Compd. 623, 7 (2015)

    Article  Google Scholar 

  19. A.K. Gain, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, Microelectron. Reliab. 49, 746 (2009)

    Article  Google Scholar 

  20. L. Zhang, K.N. Tu, Mater. Sci. Eng., R 82, 1 (2014)

    Article  Google Scholar 

  21. A.K. Gain, Y.C. Chan, W.K.C. Yung, Mater. Sci. Eng., B 162, 92 (2009)

    Article  Google Scholar 

  22. B. Philippi, K. Matoy, J. Zechner, C. Kirchlechner, G. Dehm, Scr. Mater. 123, 38 (2016)

    Article  Google Scholar 

  23. Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)

    Article  Google Scholar 

  24. F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)

    Article  Google Scholar 

  25. A.K. Gain, Y.C. Chan, Microelectron. Reliab. 54, 945 (2014)

    Article  Google Scholar 

  26. H. Li, H. Hanna, Wuhan Univ. J. Nat. Sci. 17(1), 79 (2012)

    Google Scholar 

  27. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  28. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)

    Article  Google Scholar 

  29. K. Kanlayasiri, T. Ariga, Mater. Des. 86, 371 (2015)

    Google Scholar 

  30. K.M. Kumar, V. Kripesh, L. Shen, K. Zeng, A.A.O. Tay, Mater. Sci. Eng., A 423, 57 (2006)

    Article  Google Scholar 

  31. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  32. S. Amore, E. Ricci, G. Borzone, R. Novakovic, Mater. Sci. Eng., A 495, 108 (2008)

    Article  Google Scholar 

  33. Z. Li, Z. Cao, S. Knott, A. Mikula, Y. Du, Z. Qiao, Calphad 32, 152 (2008)

    Article  Google Scholar 

  34. H. Li, H. Hanna, Wuhan Univ. J. Nat. Sci. 17(1), 79 (2012)

    Google Scholar 

  35. Z. Xia, Y. Shi, Z. Chen, J. Mater. Eng. Perform. 11, 107 (2002)

    Article  Google Scholar 

  36. V. Kripesh, M. Teo, C.T. Tai, G. Vishwanadam, Y.C. Mui, in Proceedings of the 51st Electronic Components and Technology Conference (2001), pp. 665–670

  37. T.B. Massalski, Binary Alloy Phase Diagrams (ASM, Metals Park, ohio, 1986)

    Google Scholar 

  38. R. Novakovic, T. Lanata, S. Delsante, G. Borzone, Mater. Chem. Phys. 137, 458 (2012)

    Article  Google Scholar 

  39. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011)

    Article  Google Scholar 

  40. B. Li, Y. Shi, Y. Lei, F. Guo, Z. Xia, B. Zong, J. Electron. Mater. 34(3), 217 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by The University of New South Wales (UNSW) for the project InfoEd Ref: RG124326. The authors would like to thank EPA centre staff for using the facility to do the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Gain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gain, A.K., Zhang, L. Effect of thin gold/nickel coating on the microstructure, wettability and hardness of lead-free tin–bismuth–silver solder. J Mater Sci: Mater Electron 28, 4885–4896 (2017). https://doi.org/10.1007/s10854-016-6136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6136-3

Keywords

Navigation