Magnetoresistance of nanocomposite copper/carbon thin films

Abstract

Nanocomposite thin films made of partially oxidized Cu nanoparticles embedded into hydrogenated amorphous carbon, with different thicknesses and Cu/C ratio, were prepared by means of radio frequency plasma enhanced chemical vapor deposition and radio frequency sputtering using acetylene gas and copper target. The surface roughness was investigated using atomic force microscopy, revealing the fractal geometry of the Cu/carbon thin films at the nanoscale with fractal dimensions around 2.7. In addition, the electrical properties of these films and their dependence on the application of low magnetic fields were explored at room temperature. It was found that when the Cu nanoparticles are separated by gaps, the electrical conduction is governed by tunneling effects. In these conditions, the samples exhibit negative magnetoresistance values, displaying steps in the dependences on the magnetic field. These properties suggest the potential use of these films as magnetic sensors in spintronics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    D.C. Licciardello, D.J. Thouless, Conductivity and mobility edges for two-dimensional disordered systems. J. Phys. C: Solid. State Phys. 8(24), 4157–4170 (1975)

    Article  Google Scholar 

  2. 2.

    D.J. Thouless, Maximum metallic resistance in thin wires. Phys. Rev. Lett. 39(18), 1167 (1977)

    Article  Google Scholar 

  3. 3.

    D.C. Licciardello, D.J. Thouless, Conductivity and mobility edges in disordered systems. II. Further calculations for the square and diamond lattices. J. Phys. C: Solid State Phys. 11(5), 925–936 (1978)

    Article  Google Scholar 

  4. 4.

    E. Abrahams, P.W. Anderson, D.C. Liciardello, T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42(10), 673–676 (1979)

    Article  Google Scholar 

  5. 5.

    C. Van Haesendonck, L. Van den dries, Y. Bruynseraede, G. Deutscher, Localization and negative magnetoresistance in thin copper films. Phys. Rev. B. 25(8), 5090–5096 (1982)

    Article  Google Scholar 

  6. 6.

    D. Abraham, R. Rosenbaum, Magnetoresistance of thin copper films. Phys. Rev. B. 27(2), 1413–1416 (1983)

    Article  Google Scholar 

  7. 7.

    D. Pesin, A.H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012)

    Article  Google Scholar 

  8. 8.

    M. Vazquez, C. Luna, M.P. Morales, R. Sanz, C.J. Serna, C. Mijangos, Magnetic nanoparticles: synthesis, ordering and properties. Phys. B: Condens. Matter 354(1), 71–79 (2004)

    Article  Google Scholar 

  9. 9.

    C. Luna, M. Ilyn, V. Vega, V.M. Prida, J. González, R. Mendoza-Reséndez, Size distribution and frustrated antiferromagnetic coupling effects on the magnetic behavior of ultrafine akaganéite (ß-FeOOH) nanoparticles. J. Phys. Chem. C 118(36), 21128–21139 (2014)

    Article  Google Scholar 

  10. 10.

    S. Naderi, M. Shahrokhi, H.R. Noruzi, A. Gurabi, R. Moradian, Structural, electronic and magnetic properties of Fe and Co monatomic nanochains encapsulated in BN nanotube bundle. Eur. Phys. J. Appl. Phys. 62(03), 30402 (2013)

    Article  Google Scholar 

  11. 11.

    T. Ghodselahi, A. Arman, Magnetoresistance of Cu–Ni nanoparticles in hydrogenated amorphous carbon thin films. J. Mater. Sci.: Mater. Electron. 26(6), 4193–4197 (2015)

    Google Scholar 

  12. 12.

    N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, Effects of substrate temperature on the properties of sputtered TiN thin films. J. Mater. Sci.: Mater. Electron. 27(3), 2800–2808 (2016)

    Google Scholar 

  13. 13.

    J. Kong, A.M. Cassell, H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292(4), 567–574 (1998)

    Article  Google Scholar 

  14. 14.

    M. Molamohammadi, A. Arman, A. Achour, B. Astinchap, A. Ahmadpourian, A. Boochani, S. Naderi, A. Ahmadpourian, Microstructure and optical properties of cobalt–carbon nanocomposites prepared by RF-sputtering. J. Mater. Sci.: Mater. Electron. 26(8), 5964–5969 (2015)

    Google Scholar 

  15. 15.

    T. Ghodselahi, M.A. Vesaghi, A. Gelali, H. Zahrabi, S. Solaymani, Morphology, optical and electrical properties of Cu–Ni nanoparticles in aC:H prepared by co-deposition of RF-sputtering and RF-PECVD. Appl. Surf. Sci. 258(2), 727–731 (2011)

    Article  Google Scholar 

  16. 16.

    T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, M. Ahmadi, M. Panahandeh, M. HeidariSaani, Metal–nonmetal transition in the copper–carbon nanocomposite films. Phys. B: Condens. Matter 405(18), 3949–3951 (2010)

    Article  Google Scholar 

  17. 17.

    A. Arman, T. Ghodselahi, M. Molamohammadi, S. Solaymani, H. Zahrabi, A. Ahmadpourian, Microstructure and optical properties of Cu@Ni nanoparticles embedded in aC:H. Prot. Met. Phys. Chem. Surf. 51(4), 575–578 (2015)

    Article  Google Scholar 

  18. 18.

    S. Talu, S. Stach, V. Sueiras, N.M. Ziebarth, Fractal analysis of AFM images of the surface of Bowman’s membrane of the human cornea. Ann. Biomed. Eng. 43(4), 906–916 (2015)

    Article  Google Scholar 

  19. 19.

    S. Talu, S. Stach, T. Lainovic, M. Vilotic, L. Blazic, S.F. Alb, D. Kakas, Surface roughness and morphology of dental nanocomposites polished by four different procedures evaluated by a multifractal approach. Appl. Surf. Sci. 330, 20–29 (2015)

    Article  Google Scholar 

  20. 20.

    S. Talu, A.J. Ghazai, S. Stach, A. Hassan, Z. Hassan, M. Talu, Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0. 08In0. 08Ga0. 84N thin film assessed by atomic force microscopy and fractal analysis. J. Mater. Sci.: Mater. Electron. 25(1), 466–477 (2014)

    Google Scholar 

  21. 21.

    A. Gelali, A. Ahmadpourian, R. Bavadi, M.R. Hantehzadeh, A. Ahmadpourian, Characterization of microroughness parameters in titanium nitride thin films grown by DC magnetron sputtering. J. Fusion Energy 31(6), 586–590 (2012)

    Article  Google Scholar 

  22. 22.

    S. Stach, D. Dallaeva, S. Talu, P. Kaspar, P. Tomanek, S. Giovanzana, L. Grmela, Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater. Sci.-Pol. 33(1), 175–184 (2015)

    Google Scholar 

  23. 23.

    A. Arman, Ş. Ţălu, C. Luna, A. Ahmadpourian, M. Naseri, M. Molamohammadi, Micromorphology characterization of copper thin films by AFM and fractal analysis. J. Mater. Sci.: Mater. Electron. 26(12), 9630–9639 (2015)

    Google Scholar 

  24. 24.

    S. Kulesza, M. Bramowicz, A comparative study of correlation methods for determination of fractal parameters in surface characterization. Appl. Surf. Sci. 293, 196–201 (2014)

    Article  Google Scholar 

  25. 25.

    T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baradaran, A. Karimi, Z. Mobini, Co-deposition process of RF-sputtering and RF-PECVD of copper/carbon nanocomposite films. Surf. Coat. Technol. 202(12), 2731–2736 (2008)

    Article  Google Scholar 

  26. 26.

    M. Molamohammadi, C. Luna, A. Arman, S. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J. Mater. Sci.: Mater. Electron. 26(9), 6814–6818 (2015)

    Google Scholar 

  27. 27.

    D. Dallaeva, S. Talu, S. Stach, P. Skarvada, P. Tomanek, L. Grmela, AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl. Surf. Sci. 312, 81–86 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ali Arman or Azin Ahmadpourian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arman, A., Luna, C., Mardani, M. et al. Magnetoresistance of nanocomposite copper/carbon thin films. J Mater Sci: Mater Electron 28, 4713–4718 (2017). https://doi.org/10.1007/s10854-016-6113-x

Download citation

Keywords

  • Atomic Force Microscopy
  • Fractal Dimension
  • Negative Magnetoresistance
  • Radio Frequency Plasma
  • Nanocomposite Thin Film