Magnetoresistance of nanocomposite copper/carbon thin films

  • Ali ArmanEmail author
  • Carlos Luna
  • Mohsen Mardani
  • Fatemeh Hafezi
  • Amine Achour
  • Azin AhmadpourianEmail author


Nanocomposite thin films made of partially oxidized Cu nanoparticles embedded into hydrogenated amorphous carbon, with different thicknesses and Cu/C ratio, were prepared by means of radio frequency plasma enhanced chemical vapor deposition and radio frequency sputtering using acetylene gas and copper target. The surface roughness was investigated using atomic force microscopy, revealing the fractal geometry of the Cu/carbon thin films at the nanoscale with fractal dimensions around 2.7. In addition, the electrical properties of these films and their dependence on the application of low magnetic fields were explored at room temperature. It was found that when the Cu nanoparticles are separated by gaps, the electrical conduction is governed by tunneling effects. In these conditions, the samples exhibit negative magnetoresistance values, displaying steps in the dependences on the magnetic field. These properties suggest the potential use of these films as magnetic sensors in spintronics.


Atomic Force Microscopy Fractal Dimension Negative Magnetoresistance Radio Frequency Plasma Nanocomposite Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.C. Licciardello, D.J. Thouless, Conductivity and mobility edges for two-dimensional disordered systems. J. Phys. C: Solid. State Phys. 8(24), 4157–4170 (1975)CrossRefGoogle Scholar
  2. 2.
    D.J. Thouless, Maximum metallic resistance in thin wires. Phys. Rev. Lett. 39(18), 1167 (1977)CrossRefGoogle Scholar
  3. 3.
    D.C. Licciardello, D.J. Thouless, Conductivity and mobility edges in disordered systems. II. Further calculations for the square and diamond lattices. J. Phys. C: Solid State Phys. 11(5), 925–936 (1978)CrossRefGoogle Scholar
  4. 4.
    E. Abrahams, P.W. Anderson, D.C. Liciardello, T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42(10), 673–676 (1979)CrossRefGoogle Scholar
  5. 5.
    C. Van Haesendonck, L. Van den dries, Y. Bruynseraede, G. Deutscher, Localization and negative magnetoresistance in thin copper films. Phys. Rev. B. 25(8), 5090–5096 (1982)CrossRefGoogle Scholar
  6. 6.
    D. Abraham, R. Rosenbaum, Magnetoresistance of thin copper films. Phys. Rev. B. 27(2), 1413–1416 (1983)CrossRefGoogle Scholar
  7. 7.
    D. Pesin, A.H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Vazquez, C. Luna, M.P. Morales, R. Sanz, C.J. Serna, C. Mijangos, Magnetic nanoparticles: synthesis, ordering and properties. Phys. B: Condens. Matter 354(1), 71–79 (2004)CrossRefGoogle Scholar
  9. 9.
    C. Luna, M. Ilyn, V. Vega, V.M. Prida, J. González, R. Mendoza-Reséndez, Size distribution and frustrated antiferromagnetic coupling effects on the magnetic behavior of ultrafine akaganéite (ß-FeOOH) nanoparticles. J. Phys. Chem. C 118(36), 21128–21139 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Naderi, M. Shahrokhi, H.R. Noruzi, A. Gurabi, R. Moradian, Structural, electronic and magnetic properties of Fe and Co monatomic nanochains encapsulated in BN nanotube bundle. Eur. Phys. J. Appl. Phys. 62(03), 30402 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Ghodselahi, A. Arman, Magnetoresistance of Cu–Ni nanoparticles in hydrogenated amorphous carbon thin films. J. Mater. Sci.: Mater. Electron. 26(6), 4193–4197 (2015)Google Scholar
  12. 12.
    N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, Effects of substrate temperature on the properties of sputtered TiN thin films. J. Mater. Sci.: Mater. Electron. 27(3), 2800–2808 (2016)Google Scholar
  13. 13.
    J. Kong, A.M. Cassell, H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292(4), 567–574 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Molamohammadi, A. Arman, A. Achour, B. Astinchap, A. Ahmadpourian, A. Boochani, S. Naderi, A. Ahmadpourian, Microstructure and optical properties of cobalt–carbon nanocomposites prepared by RF-sputtering. J. Mater. Sci.: Mater. Electron. 26(8), 5964–5969 (2015)Google Scholar
  15. 15.
    T. Ghodselahi, M.A. Vesaghi, A. Gelali, H. Zahrabi, S. Solaymani, Morphology, optical and electrical properties of Cu–Ni nanoparticles in aC:H prepared by co-deposition of RF-sputtering and RF-PECVD. Appl. Surf. Sci. 258(2), 727–731 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, M. Ahmadi, M. Panahandeh, M. HeidariSaani, Metal–nonmetal transition in the copper–carbon nanocomposite films. Phys. B: Condens. Matter 405(18), 3949–3951 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Arman, T. Ghodselahi, M. Molamohammadi, S. Solaymani, H. Zahrabi, A. Ahmadpourian, Microstructure and optical properties of Cu@Ni nanoparticles embedded in aC:H. Prot. Met. Phys. Chem. Surf. 51(4), 575–578 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Talu, S. Stach, V. Sueiras, N.M. Ziebarth, Fractal analysis of AFM images of the surface of Bowman’s membrane of the human cornea. Ann. Biomed. Eng. 43(4), 906–916 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Talu, S. Stach, T. Lainovic, M. Vilotic, L. Blazic, S.F. Alb, D. Kakas, Surface roughness and morphology of dental nanocomposites polished by four different procedures evaluated by a multifractal approach. Appl. Surf. Sci. 330, 20–29 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Talu, A.J. Ghazai, S. Stach, A. Hassan, Z. Hassan, M. Talu, Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0. 08In0. 08Ga0. 84N thin film assessed by atomic force microscopy and fractal analysis. J. Mater. Sci.: Mater. Electron. 25(1), 466–477 (2014)Google Scholar
  21. 21.
    A. Gelali, A. Ahmadpourian, R. Bavadi, M.R. Hantehzadeh, A. Ahmadpourian, Characterization of microroughness parameters in titanium nitride thin films grown by DC magnetron sputtering. J. Fusion Energy 31(6), 586–590 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Stach, D. Dallaeva, S. Talu, P. Kaspar, P. Tomanek, S. Giovanzana, L. Grmela, Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater. Sci.-Pol. 33(1), 175–184 (2015)Google Scholar
  23. 23.
    A. Arman, Ş. Ţălu, C. Luna, A. Ahmadpourian, M. Naseri, M. Molamohammadi, Micromorphology characterization of copper thin films by AFM and fractal analysis. J. Mater. Sci.: Mater. Electron. 26(12), 9630–9639 (2015)Google Scholar
  24. 24.
    S. Kulesza, M. Bramowicz, A comparative study of correlation methods for determination of fractal parameters in surface characterization. Appl. Surf. Sci. 293, 196–201 (2014)CrossRefGoogle Scholar
  25. 25.
    T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baradaran, A. Karimi, Z. Mobini, Co-deposition process of RF-sputtering and RF-PECVD of copper/carbon nanocomposite films. Surf. Coat. Technol. 202(12), 2731–2736 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Molamohammadi, C. Luna, A. Arman, S. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J. Mater. Sci.: Mater. Electron. 26(9), 6814–6818 (2015)Google Scholar
  27. 27.
    D. Dallaeva, S. Talu, S. Stach, P. Skarvada, P. Tomanek, L. Grmela, AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl. Surf. Sci. 312, 81–86 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Vacuum Technology GroupACECR Sharif BranchTehranIran
  2. 2.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  3. 3.Institut National de la Recherche Scientifique (INRS)VarennesCanada
  4. 4.Department of Physics, Kermanshah BranchIslamic Azad UniversityKermanshahIran

Personalised recommendations