Skip to main content
Log in

Synthesis and performance study of amino functionalized graphene aerogel grafted with polyaniline nanofibers as an efficient supercapacitor material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitors are one of the most promising solutions for modern life high-power storage applications. It can be expected that supercapacitors facilitate storing higher amount of electrical energy and its controlled release. In the present work, amino functionalized graphene aerogel incorporated into different amounts of polyaniline nanofibers (FGA–PANi) through a simple procedure and their electrochemical properties were investigated. Amino functionalized graphene aerogel (FGA) was obtained by simultaneous reduction and cross-linking of graphene oxide sheets by p-phenylenediamine, then PANi nanofibers grafted to the lately generated amine groups by interfacial polymerization. The applied procedure consists of three quite facile steps, which is faster and more scalable than the previous studies. Morphological and chemical characteristics of nanocomposites revealed successful grafting of PANI nanofibers to the FGA. Electrochemical properties of the samples were investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy methods in 1 M H2SO4 as electrolyte. The nanocomposite with the high ratio of PANI (FGA–PANi-3) exhibited specific capacitance of 560 F/g at a discharge current density of 1 A/g and good rate capability (473 F/g at 10 A/g). Moreover, FGA:PANi nanocomposite with the mass ratio of 1:1 exhibited best cycling performance by maintaining 85% of its initial capacitance after 1500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Chen, Y. Liu, W. Li, C. Wu, L. Xu, H. Yang, J. Mater. Sci. 50, 5466 (2015)

    Article  Google Scholar 

  2. D.U. Eberle, D.R. von Helmolt, Energy Environ. Sci. 3, 689 (2010)

    Article  Google Scholar 

  3. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Sources 190, 578 (2009)

    Article  Google Scholar 

  4. W. Yang, Z. Gao, N. Song, Y. Zhang, Y. Yang, J. Wang, J. Power Sources 272, 915 (2014)

    Article  Google Scholar 

  5. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)

    Article  Google Scholar 

  6. S.R. Sivakkumar, W.J. Kim, J.-A. Choi, D.R. MacFarlane, M. Forsyth, D.-W. Kim, J. Power Sources 171, 1062 (2007)

    Article  Google Scholar 

  7. K.R. Prasad, N. Miura, J. Power Sources 135, 354 (2004)

    Article  Google Scholar 

  8. L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 38, 2520 (2009)

    Google Scholar 

  9. H.-J. Liu, X.-M. Wang, W.-J. Cui, Y.-Q. Dou, D.-Y. Zhao, Y.-Y. Xia, J. Mater. Chem. 20, 4223 (2010)

    Article  Google Scholar 

  10. W. Chen, L. Yan, Nanoscale 3, 3132 (2011)

    Article  Google Scholar 

  11. X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem. 21, 6494 (2011)

    Article  Google Scholar 

  12. L.-B. Xing, S.-F. Hou, J. Zhou, J.-L. Zhang, W. Si, Y. Dong, S. Zhuo, J. Solid State Chem. 230, 224 (2015)

    Article  Google Scholar 

  13. M.A. Karimi, F. Banifatemeh, M. Ranjbar, J. Mater. Sci. Mater. Electron. 1 (2016). doi:10.1007/s10854-016-5735-3

  14. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, Mater. Res. Express 3, 075501 (2016)

    Article  Google Scholar 

  15. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, J. Mater. Sci.: Mater. Electron. 27, 10163 (2016)

    Google Scholar 

  16. M.-S. Poorali, M.-M. Bagheri-Mohagheghi, J. Mater. Sci.: Mater. Electron. 27, 260 (2016)

    Google Scholar 

  17. W. Wang, A.H. Jayatissa, J. Mater. Sci.: Mater. Electron. 26, 7780 (2015)

    Google Scholar 

  18. V.H. Luan, H.N. Tien, L.T. Hoa, N.T.M. Hien, E.-S. Oh, J. Chung, E.J. Kim, W.M. Choi, B.-S. Kong, S.H. Hur, J. Mater. Chem. A 1, 208 (2013)

    Article  Google Scholar 

  19. M. Deng, B. Yang, Y. Hu, J. Mater. Sci. 40, 5021 (2005)

    Article  Google Scholar 

  20. H. Tamai, M. Hakoda, T. Shiono, H. Yasuda, J. Mater. Sci. 42, 1293 (2007)

    Article  Google Scholar 

  21. H. Bai, Y. Xu, L. Zhao, C. Li, G. Shi, Chem. Commun. (Camb.) 13, 1667 (2009)

    Article  Google Scholar 

  22. F. Chen, P. Liu, Q. Zhao, Electrochim. Acta 76, 62 (2012)

    Article  Google Scholar 

  23. D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 3, 1745 (2009)

    Article  Google Scholar 

  24. Q. Zhang, Y. Li, Y. Feng, W. Feng, Electrochim. Acta 90, 95 (2013)

    Article  Google Scholar 

  25. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)

    Article  Google Scholar 

  26. S. Xiong, Y. Shi, J. Chu, M. Gong, B. Wu, X. Wang, Electrochim. Acta 127, 139 (2014)

    Article  Google Scholar 

  27. Z. Gao, F. Wang, J. Chang, D. Wu, X. Wang, X. Wang, F. Xu, S. Gao, K. Jiang, Electrochim. Acta 133, 325 (2014)

    Article  Google Scholar 

  28. N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.B. Baek, ACS Nano 6, 1715 (2012)

    Article  Google Scholar 

  29. L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou, Y. Song, Sci. Rep. 3, 3568 (2013)

    Google Scholar 

  30. L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, ACS Nano 6, 5941 (2012)

    Article  Google Scholar 

  31. X. Liu, P. Shang, Y. Zhang, X. Wang, Z. Fan, B. Wang, Y. Zheng, J. Mater. Chem. A 2, 3077 (2014)

    Google Scholar 

  32. Z.F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, J. Xie, Carbon 71, 257 (2014)

    Article  Google Scholar 

  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  Google Scholar 

  34. R. Thekkayil, H. John, P. Gopinath, Synth. Met. 185–186, 38 (2013)

    Article  Google Scholar 

  35. W.Ł. Uzny, E. Bańka, Macromolecules 33, 425 (2000)

    Article  Google Scholar 

  36. J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, ACS Nano 4, 5019 (2010)

    Article  Google Scholar 

  37. H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Energy Environ. Sci. 6, 1185 (2013)

    Article  Google Scholar 

  38. S.B. Yoon, E.H. Yoon, K.B. Kim, J. Power Sources 196, 10791 (2011)

    Article  Google Scholar 

  39. H. Mahdavi, P.K. Kahriz, H. Gholipour Ranjbar, T. Shahalizade, J. Mater. Sci. Mater. Electron. 27, 7407 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Kahriz, P.K., Gholipour-Ranjbar, H. et al. Synthesis and performance study of amino functionalized graphene aerogel grafted with polyaniline nanofibers as an efficient supercapacitor material. J Mater Sci: Mater Electron 28, 4295–4305 (2017). https://doi.org/10.1007/s10854-016-6053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6053-5

Keywords

Navigation