Skip to main content
Log in

Characterization of stretchable SWCNTs/Lycra fabric electrode with dyeing process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Stretchable electronics, as a promising research frontier, has achieved progress in a variety of sophisticated applications. The realization of stretchable electronics frequently involves the demand for a stretchable electrode as an electrical circuit. However, it still remains a challenge to fabricate high performance stretchable electrode. Here, we present a facile, cost-effective, and scalable method for manufacturing stretchable composite fabric with a “dyeing and drying” process: Lycra fabric was immersed in SWCNTs ink with 100% pre-strain. The composite fabric possesses a small sheet resistance (65 ohms/□), which remains 65 ohms/□ at 35% tensile strain. In addition, the conductivity of the composite fabric (initial sheet resistance of 65 ohms/□) remains perfectly stable after 500 stretching events. LED is integrated efficiently utilizing the composite fabric as a stretchable electric wiring system, demonstrating the potential applications in stretchable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.A. Rogers, T. Someya, Y. Huang, Science 327, 1603 (2010)

    Article  Google Scholar 

  2. D.H. Kim, J. Xiao, J. Song, Y. Huang, J.A. Rogers, Adv. Mater. 22, 2108 (2010). doi:10.1002/adma.200902927

    Article  Google Scholar 

  3. T. Sekitani, H. Nakajima, H. Maeda et al., Nat. Mater. 8, 494 (2009). doi:10.1038/nmat2459

    Article  Google Scholar 

  4. D.J. Lipomi, M. Vosgueritchian, B.C. Tee et al., Nat. Nanotechnol. 6, 788 (2011). doi:10.1038/nnano.2011.184

    Article  Google Scholar 

  5. Y. Huang, W. Wang, Z. Sun, Y. Wang, P. Liu, C. Liu, J. Mater. Res. 30, 1869 (2015). doi:10.1557/jmr.2015.160

    Article  Google Scholar 

  6. A.B.V.K. Kumar, C. Wan Bae, L. Piao, S.-H. Kim, Mater. Res. Bull. 48, 2944 (2013). doi:10.1016/j.materresbull.2013.04.035

    Article  Google Scholar 

  7. Y.H. Duan, Y. Duan, P. Chen, Y. Tao, Y.Q. Yang, Y. Zhao, Nanoscale Res. Lett. 10, 90 (2015). doi:10.1186/s11671-015-0810-x

    Article  Google Scholar 

  8. Y.X. Jin, L. Li, Y.R. Cheng, L.Q. Kong, Q.B. Pei, F. Xiao, Adv. Funct. Mater. 25, 1581 (2015). doi:10.1002/adfm.201403293

    Article  Google Scholar 

  9. K. Mitsubayashi, Y. Wakabayashi, S. Tanimoto, D. Murotomi, T. Endo, Biosens. Bioelectron. 19, 67 (2003). doi:10.1016/s0956-5663(03)00130-1

    Article  Google Scholar 

  10. Y.-S. Park, K.-H. Choi, H.-K. Kim, J. Phys. D Appl. Phys. 42, 235109 (2009). doi:10.1088/0022-3727/42/23/235109

    Article  Google Scholar 

  11. J. Wen, Y. Jiang, Y. Yang, S. Li, J. Mater. Sci.: Mater. Electron. 25, 1063 (2014)

    Google Scholar 

  12. W. Yang, J. Xu, Y. Yang et al., J. Mater. Sci.: Mater. Electron. 26, 1668 (2015)

    Google Scholar 

  13. K. Saetia, J.M. Schnorr, M.M. Mannarino et al., Adv. Funct. Mater. 24, 492 (2014). doi:10.1002/adfm.201302344

    Article  Google Scholar 

  14. L. Hu, M. Pasta, F.L. Mantia et al., Nano Lett. 10, 708 (2010). doi:10.1021/nl903949m

    Article  Google Scholar 

  15. B. Yue, C. Wang, X. Ding, G.G. Wallace, Electrochim. Acta 68, 18 (2012). doi:10.1016/j.electacta.2012.01.109

    Article  Google Scholar 

  16. G. Liang, L. Zhu, J. Xu, D. Fang, Z. Bai, W. Xu, Electrochim. Acta 103, 9 (2013). doi:10.1016/j.electacta.2013.04.065

    Article  Google Scholar 

  17. J. Xu, M. Li, L. Wu et al., J. Power Sources 257, 230 (2014). doi:10.1016/j.jpowsour.2014.01.123

    Article  Google Scholar 

  18. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 321, 1468 (2008)

    Article  Google Scholar 

  19. D. Wang, Y. Huang, Y. Ma, P. Liu, C. Liu, Y. Zhang, J. Mater. Res. 29, 2845 (2014). doi:10.1557/jmr.2014.328

    Article  Google Scholar 

  20. M. Tian, Y. Huang, W. Wang et al., J. Mater. Res. 29, 1288 (2014). doi:10.1557/jmr.2014.109

    Article  Google Scholar 

  21. S. Yun, S.-D. Jang, G.-Y. Yun, J.-H. Kim, J. Kim, Appl. Phys. Lett. 95, 104102 (2009). doi:10.1063/1.3224200

    Article  Google Scholar 

  22. Y. Abdi, J. Koohsorkhi, J. Derakhshandeh et al., Mater. Sci. Eng. C 26, 1219 (2006)

    Article  Google Scholar 

  23. Z. Kolahdouz, M. Kolahdouz, H. Ghanbari, S. Mohajerzadeh, S. Naureen, H.H. Radamson, Mater. Sci. Eng. B 177, 1542 (2012)

    Article  Google Scholar 

  24. H. Hesamzadeh, B. Ganjipour, S. Mohajerzadeh, A. Khodadadi, Y. Mortazavi, S. Kiani, Carbon 42, 1043 (2004)

    Article  Google Scholar 

  25. V.L. Pushparaj, M.M. Shaijumon, A. Kumar et al., Proc. Natl. Acad. Sci. 104, 13574 (2007). doi:10.1073/pnas.0706508104

    Article  Google Scholar 

  26. B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Appl. Phys. Lett. 90, 121913 (2007). doi:10.1063/1.2715027

    Article  Google Scholar 

  27. M. Wagner, G. Reul, J. Teresi, K.L. Kayser, Am. J. Surg. 111, 838 (1966)

    Article  Google Scholar 

  28. M. Islam, E. Rojas, D. Bergey, A. Johnson, A. Yodh, Nano Lett. 3, 269 (2003)

    Article  Google Scholar 

  29. H.-Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, J. Am. Chem. Soc. 129, 7758 (2007)

    Article  Google Scholar 

  30. I.-C. Kim, K.-H. Lee, Desalination 192, 246 (2006)

    Article  Google Scholar 

  31. D. Rajkumar, B.J. Song, J.G. Kim, Dyes Pigm. 72, 1 (2007)

    Article  Google Scholar 

  32. S. Ryu, P. Lee, J.B. Chou et al., ACS Nano 9, 5929 (2015)

    Article  Google Scholar 

  33. L.-L. Xu, M.-X. Guo, S. Liu, S.-W. Bian, RSC Adv. 5, 25244 (2015)

    Article  Google Scholar 

  34. U.J. Kim, C.A. Furtado, X. Liu, G. Chen, P.C. Eklund, J. Am. Chem. Soc. 127, 15437 (2005)

    Article  Google Scholar 

  35. J. Chen, M.A. Hamon, H. Hu et al., Science 282, 95 (1998)

    Article  Google Scholar 

  36. M. Park, J. Im, M. Shin et al., Nat. Nanotechnol. 7, 803 (2012)

    Article  Google Scholar 

  37. S. Hasegawa, I. Shiraki, T. Tanikawa et al., J. Phys. Condens. Matter 14, 8379 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Program of National Natural Science Foundation of China (Nos. 61401141, 61471155), Anhui Provincial Natural Science Foundation (No. 1508085QF115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wang, Y., Gao, L. et al. Characterization of stretchable SWCNTs/Lycra fabric electrode with dyeing process. J Mater Sci: Mater Electron 28, 4279–4287 (2017). https://doi.org/10.1007/s10854-016-6051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6051-7

Keywords

Navigation