Skip to main content
Log in

Fabrication of user-defined copper conductive patterns onto paper substrate for flexible electronics by combining wax patterning with electroless plating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, user-defined copper conductive patterns were successfully fabricated via electroless deposition onto paper substrate by using a four-step treatment process. The pristine paper samples are first dipped in 3-aminopropyltrimethoxysilane (APTMS) solution to form a uniform layer for the subsequent absorption of gold nanoparticles. Then the paper samples were wax patterned and immersed in gold nanoparticles solution in preparation for the next step electroless deposition. Herein, wax pattern was achieved via a stylus printer to print desired stencil dot matrix, which acted as hydrophobic channels, onto the paper substrate. FT-IR measurement, ultrasonic washing test and Scotch®-tape test were utilized to investigate the interaction mechanism between APTMS molecules and paper substrate. Contact angle measurement demonstrated that the hydrophobic surface of wax patterned paper. SEM images showed that the thickness of copper conductive patterns was estimated to be 2.44 μm, which was corresponding well with Surface Profiler measurement. X-ray diffraction analysis showed that the copper films deposited on paper substrate has a structure with Cu (1 1 1) preferred orientation and the resistivity of Cu patterns measured by a digital four-point probe was 6.8 µΩ cm, which was 4.2 times of the bulk Cu. Notably, only one cycle of printing wax on paper substrate could successfully regulate the deposition area of Cu films. Those above advantages make this method a promising candidate for applications in constructing functional flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.S. Cook, Y.N. Fang, S.K. Kim, T.R. Le, W.B. Goodwin, K.H. Sandhage, M.M. Tentzeris, Electron. Mater. Lett. 9, 669 (2013)

    Google Scholar 

  2. D.R. Frear, J. Mater. Sci.: Mater. Electron. 1, 319 (2007)

    Google Scholar 

  3. J. Zhang, X.B. Yi, X.C. Wang, J. Ma, S. Liu, X.J. Wang, J. Mater. Sci.: Mater. Electron. 10, 7901 (2015)

    Google Scholar 

  4. R. Bala, A. Marwaha, S. Marwaha, J. Mater. Sci.: Mater. Electron. 5, 5064 (2016)

    Google Scholar 

  5. H.M. Ren, Y. Guo, S.Y. Huang, K. Zhang, M.M.F. Yuen, X.Z. Fu, S.H. Yu, R. Sun, C.P. Wong, ACS Appl. Mater. Inter. 7, 13685 (2015)

    Article  Google Scholar 

  6. A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Adv. Mater. 23, 3426 (2011)

    Article  Google Scholar 

  7. D. Tobjork, R. Osterbacka, Adv. Mater. 23, 1935 (2011)

    Article  Google Scholar 

  8. X. Luo, Y. Zhang, C. Zanden, M. Murugesan, Y. Cao, L. Ye, J. Liu, J. Mater. Sci.: Mater. Electron. 5, 2333 (2014)

    Google Scholar 

  9. H.M. Lee, S.Y. Choi, A. Jung, S.H. Ko, Angew. Chem. 125, 7872 (2013)

    Article  Google Scholar 

  10. K. Akamatsu, I. Shingo, N. Hidemi, Langmuir 19, 10366 (2003)

    Article  Google Scholar 

  11. S. Imran, Z. Ali, D.J. Kang, J. Alloy. Compd. 617, 707 (2014)

    Article  Google Scholar 

  12. H.T. Chen, H.L. Lin, C. Kuo, I.G. Chen, J. Mater. Chem. C 4, 7675 (2016)

    Article  Google Scholar 

  13. J.Y. Zhang, I.W. Boyd, Thin Solid Films 318, 234 (1998)

    Article  Google Scholar 

  14. C.C. Tseng, Y.H. Lin, Y.Y. Shu, C.J. Chen, M.D. Ger, J. Taiwan Inst. Chem. E 42, 989 (2011)

    Article  Google Scholar 

  15. K. Felmet, Y.L. Loo, Y. Sun, Appl. Phys. Lett. 85, 3316 (2004)

    Article  Google Scholar 

  16. J. Noh, D. Yeom, C. Lim, H. Cha, J. Han, J. Kim, Y. Park, V. Subramanian, G. Cho, IEEE Trans. Electron Pack. 33, 275 (2010)

    Article  Google Scholar 

  17. Z. Yin, F. Chen, Surf. Coat. Tech. 228, 34 (2013)

    Article  Google Scholar 

  18. R. Zhou, C. Xu, H. Chen, G. Liu, Y. Liu, IET. Micro. Nano. Lett. 9, 770 (2014)

    Article  Google Scholar 

  19. G. Zou, M. Cao, H. Lin, H. Jin, Y. Kang, Y. Chen, Powder Technol. 168, 84 (2006)

    Article  Google Scholar 

  20. S. Schaefers, L. Rast, A. Stanishevsky, Mater. Lett. 60, 706 (2006)

    Article  Google Scholar 

  21. S. Sawada, Y. Masuda, P. Zhu, K. Koumoto, Langmuir 22, 332 (2006)

    Article  Google Scholar 

  22. Q. Ji, J.P. Hill, K. Ariga, J. Mater. Chem. A. 1, 3600 (2013)

    Article  Google Scholar 

  23. L. Zhai, X. Liu, T. Li, Z. Feng, Z. Fan, Vacuum 114, 21 (2015)

    Article  Google Scholar 

  24. M. Lv, J. Liu, S. Wang, J. Ai, X. Zeng, Appl. Surf. Sci. 366, 227 (2016)

    Article  Google Scholar 

  25. B. Wang, L.L. Kerr, Sol. Energy Mater. Sol. Cells 95, 2531 (2011)

    Article  Google Scholar 

  26. Y. Lu, Q. Liang, W. Li, Mater. Chem. Phys. 140, 553 (2013)

    Article  Google Scholar 

  27. D.I. Petukhov, M.N. Kirikova, A.A. Bessonov, M.J. Bailey, Mater. Lett. 132, 302 (2014)

    Article  Google Scholar 

  28. B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Thin Solid Films 515, 7706 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61371019) and the Shanghai Civil-military Integration Project (No. 140217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinxiang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhao, H. & Lu, Y. Fabrication of user-defined copper conductive patterns onto paper substrate for flexible electronics by combining wax patterning with electroless plating. J Mater Sci: Mater Electron 28, 4219–4228 (2017). https://doi.org/10.1007/s10854-016-6044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6044-6

Keywords

Navigation